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We propose a general formulation of the renormalization group (RG) as a family of quantum channels which
connect the microscopic physical world to the observable world at some scale. By endowing the set of quantum
states with an operationally motivated information geometry, we induce the space of Hamiltonians with a
corresponding metric geometry. The resulting structure allows one to quantify information loss along RG flows
in terms of the distinguishability of thermal states. In particular, we introduce a family of functions, expressible
in terms of two-point correlation functions, which are nonincreasing along the flow. Among those, we study the
speed of the flow and its generalization to infinite lattices.
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The renormalization group (RG), one of the most profound
ideas in science, allows us to understand long-range physics
without requiring us to completely describe the fundamental
constituents of the universe. This is because small-scale
microscopic behavior can be absorbed by a handful of
parameters of some effective theory.

The RG is typically taken to act on the space of theories
or, more concretely, the space K of Hamiltonians and is thus
a kind of superoperation which produces from a given initial
Hamiltonian an effective Hamiltonian on some larger scale.
By repeatedly composing the RG operation one generates a
flow or trajectory in K. This flow typically possesses attractive
fixed points or surfaces corresponding to the physics at large
length scales.

The fact that vastly different theories can converge to the
same submanifold characterized by a handful of relevant
parameters—the phenomenon of “universality”—invites an
information-theoretic explanation [1]. Indeed, because the
renormalization procedure ignores progressively larger-scale
features of the theory, its irreversibility should be directly
related to a loss of information about the microscopic physics.

Previous work in this direction has focused on the attempt
to derive a function on the manifold K which always decreases
along the RG flow, except at a fixed point, which would
prove the irreversibility of the renormalization procedure.
For (1 + 1)-dimensional quantum fields, this is achieved
by Zamolodchikov’s c theorem [2], which establishes the
existence of such a scalar function, expressible in terms of the
correlation functions of the theory. Similar results have been
obtained for higher-dimensional theories [3,4]. More direct
information-theoretic approaches were also explored in the
context of classical field theory [5,6] or using ground-state
entanglement [7].

Here we propose a different approach based on an
information-theoretic formulation of the renormalization
group. We argue that the RG is naturally expressed in terms of
a Markov process on the manifold of statistical quantum states.
Because thermal states essentially specify their Hamiltonian,
we can pull back any information-theoretic structure on the
manifold of statistical quantum states to the manifold of
Hamiltonians. In this context, the information being lost along
the RG flow is that which measures distinguishability between

different theories. This gives rise to an information metric onK
which allows for the derivation of quantum field theory (QFT)
friendly c-like quantities.

Suppose that the fundamental constituents of the system
under study are quantum particles or degrees of freedom
interacting at some extremely short length scale ε. We write
the (possibly mixed) quantum state of this system as ρε. When
we perform an experiment at a larger length scale � � ε we are
making a very imperfect measurement: We are ignoring many
unobservable degrees of freedom. The most general procedure
to ignore degrees of freedom consistent with the laws of
quantum mechanics is described by a quantum channel E ,
i.e., a completely positive and trace-preserving map. We thus
write the best description of the quantum state available to our
experiments as ρ� = E�(ρε), where E� denotes the quantum
channel which ignores (or discards) all the degrees of freedom
we cannot observe. Typically in the context of Wilsonian
renormalization [8] and the functional RG the map E� is the
partial trace channel over all momenta |k| � 1/�. For our
purposes, we suppose that knowing the effective state on any
intermediate scale is enough to obtain the effective state on
a larger scale. We call � �→ E� the renormalization group or
process.

In order to connect this flow on states to a flow on
Hamiltonians, we assume that the fundamental state ρε is
in thermal equilibrium at a temperature τ and hence has the
form ρε = e−Hε/τ /Z for some Hamiltonian Hε. Furthermore,
if the temperature is defined by a reservoir with which our
system is in contact, it is natural that the effective states
ρ� = E�(ρε) are thermal states at the same temperature τ . The
effective Hamiltonian H� at scale � can then be defined so that
ρ� = eH�/τ /Z or H� = −τ ln(Zρ�). The partition function is
independent of �, thanks to the fact that the maps E� are trace
preserving. Since the temperature is assumed to be constant,
we can work with the operator K� = −H�/τ instead of H� and,
abusing language, call those Hamiltonians. The basic arena of
our study is therefore the manifoldK of Hermitian operators K

with the same Z = Tr eK .
On a finite-dimensional Hilbert space, the process E� is

generated by a Lindblad superoperator L� so that d
d�

ρ� =
L�(ρ�). In order to further simplify the presentation, we assume
a constant generator L. This may require the parameter of
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FIG. 1. Artist’s impression of the manifold of states S and the
manifold of Hamiltonians K. The manifolds are related by the
exponential map and their tangent spaces by its derivative �ρ . Here
ρ = eK/Z and x = �ρ(a).

the flow to be different from the length scale �, albeit still a
monotone function of �. In order to differentiate between them,
we therefore denote that parameter t and write d

dt
ρt = L(ρt ) so

that the family of channels Et = etL is the semigroup generated
by L.

We define the effective Hamiltonian at the scale indexed
by t to be Kt such that ρt = eKt /Z. The evolution of the
Hamiltonian Kt = ln(Zρt ) under the renormalization group is
given by

d

dt
Kt = B(Kt ),

with tangent field B(K) = �−1
eK L(eK ) = �−1

ρ L(ρ), which we
expressed in terms of the useful linear superoperator [9],

�−1
ρ (x) = d

dt
ln(ρ + tx)

∣∣∣∣
0

=
∫ ∞

0
du

1

ρ + u1
x

1

ρ + u1
. (1)

This superoperator can be understood as a noncommutative
generalization of the operation of dividing by ρ. In geometric
terms, it pushes forward a tangent vector at ρ = eK/Z to the
corresponding tangent vector at K (see Fig. 1). We also need
its inverse,

�ρ(a) = d

dt
eln ρ+ta

∣∣∣∣
t=0

=
∫ 1

0
ρsaρ(1−s)ds.

On the manifold of states, since the diffeomorphism etL is
linear, its push forward on tangent vectors is just itself. Hence,
on the manifold of Hamiltonians, it maps the tangent vector a

at K to at = �−1
ρt

etL �ρ(a) at the point Kt . The infinitesimal
form is

d

dt
at = d

dε
B(Kt + εat )

∣∣∣∣
ε=0

= [
�−1

ρt
L�ρt

− �−1
ρt

�̇ρt

]
(at )

=: ∇ρt
at . (2)

Although our setup is finite dimensional, it would be natural
to identify B(K) with the β function of quantum field theory in
the following way. For a translation-invariant QFT one would
usually assume that K has the form K = ∫

dx
∑

i gi	i(x)
where the family {	i(x)}∞i=0 spans all local field operators at x

and gi are the corresponding coupling constants. The generator
B(K) then should have the formB(K) = ∫

dx
∑

i βi(K)	i(x)
where the component βi(K) ∈ R is the β function for the
coupling constant gi .

I. INFORMATION GEOMETRY

Recall that vectors tangent to the Hamiltonian K are
observables with zero expectation value with respect to the
state eK/Z. For any two such observables a and b, we define
the bilinear form

〈a,b〉K := − ∂2

∂t ∂s
F (K + ta + sb)

∣∣∣∣
0

= Tr [a�ρ(b)], (3)

where F (K) = − ln Tr eK is the free energy for the Hamilto-
nian H = −τK .

This defines a Riemannian metric on the manifold of
observables. The corresponding metric on the manifold of
states is the Kubo-Mori metric: Given two tangent (traceless)
vectors x and y at ρ,

〈x,y〉ρ = ∂2

∂t ∂s
S(ρ + tx + sy‖ρ)

∣∣∣∣
0

= Tr [x�−1
ρ (y)], (4)

where S(ρ ′‖ρ) = Tr [ρ ′(ln ρ ′ − ln ρ)] is the relative entropy
[10], an information-theoretic quantity which measures how
distinguishable the two states ρ and ρ ′ are [11]. This gives
an operational meaning to our metric. We can think of the
norm

√〈a,a〉K of a small tangent vector a as measuring how
distinguishable the perturbed state eK+a/Z is from eK/Z.

There are two compatible interpretations of the relation
between these bilinear forms, connected to the dual role
played by observables in equilibrium statistical mechanics. On
one hand, observables are perturbations of Hamiltonians and
are hence tangent vectors to the manifold of Hamiltonians,
connected to the manifold of states via the exponential
diffeomorphism. On the other hand, observables can be seen
as cotangent vectors on the manifold of states since they are
meant to be combined with states to yield an expectation value.

The main property of these dual metrics is that the norm of
a tangent vector cannot increase under the action of a quantum
channel [12]. For states this means that for any channel N and
tangent vector x,

〈N (x),N (x)〉N (ρ) � 〈x,x〉ρ. (5)

In classical probability theory, there exists only one metric
with this property: the Fisher-Rao metric, which has been
extensively used in statistical physics (e.g., see Refs. [13–15]
in the context of renormalization). The metric defined in Eq. (4)
is one of a family of noncommutative generalizations [16] and
reduces to the Fisher-Rao metric for commuting operators and
states.

It follows from this contraction property that, along the
flow generated by B on the manifold of Hamiltonians, for any
tangent vector a,

d

dt
〈at ,at 〉Kt

� 0, (6)
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which, more explicitly, is equivalent to the statement that for
all ρ = eK/Z and for all tangent vectors a,

2〈a,∇ρ(a)〉K + Tr [a�̇ρ(a)] � 0, (7)

where the �̇ρ denotes the derivative of �ρ with respect to t .

II. NONINCREASING SCALAR

Motivated by Zamolodchikov’s c theorem [2], we want
to build a scalar field K �→ f (K) on the manifold K of
Hamiltonians which has the property that it never increases
under the renormalization flow generated by B, i.e., such that

d

dt
f (Kt ) � 0, (8)

and, if possible, such that it stops decreasing only at a fixed
point.

In the case where an exact fixed point of the renormalization
semigroup is known, i.e., a state σ such that L(σ ) = 0, then
any contractive measure of distinguishability with respect
to σ has that property. An example would be the rela-
tive entropy: f (K) = S(eK/Z‖σ ). Indeed, S(ρ1‖ρ2) satisfies
S[E(ρ1)‖E(ρ2)] � S(ρ1‖ρ2) for any quantum channel E . It
has a straightforward interpretation: It measures the distin-
guishability with respect to the fixed point. Moreover, if σ is
the maximally mixed state, i.e., the infinite temperature fixed
point, then this function is simply a constant minus the entropy.
However, this presupposes that the fixed point towards which
the system flows is known. In addition, it is a very difficult
quantity to compute. We propose instead a quantity which can
be computed locally directly in terms of correlation functions.

In view of Eq. (6), the norm of any observable, which
is expressed in terms of a Green’s function, does decrease
along the flow. That quantity is not purely a function of the
Hamiltonian K . However, it can be made so if the observable is
replaced by a tangent field K �→ A(K) which is invariant under
the flow, i.e., such that, for all t, A(Kt ) is equal to the image
under the flow of the tangent vector A(K0). Using Eq. (2), the
infinitesimal version of this condition is

d

dt
A(Kt ) = ∇ρt

[A(Kt )], (9)

where ρt = eKt /Z. This is equivalent to the statement that the
Lie derivative of A with respect to B is zero. An example is
A = B itself, or fields of the form A(K) = �−1

eK L′(eK ), where
L′ is any linear superoperator which commutes withL. Indeed,
if a field A satisfies Eq. (9), then Eq. (7) implies that the scalar,

f (K) = 〈A(K),A(K)〉K, (10)

where ρ = eK/Z satisfies Eq. (8). For instance, if we use
A := B, then f (K) is the squared speed of the flow, f (K) =
〈B(K),B(K)〉K measured in the distinguishability metric,
which is zero if and only if B(K) = 0, i.e., at a fixed point. In
the classical setting, this corresponds to the “velocity function”
of Ref. [14].

III. INFINITE LATTICES

We have so far worked within the framework of finite-
dimensional Hilbert spaces and for a generic semigroup Et .
However, to study renormalization more specifically, we may
need to consider infinite lattices and translation-invariant states

for which quantities, such as those defined in Eq. (10), are
usually infinite.

The natural course of action is to consider a density
corresponding to f (K). But, as we will see, this presents severe
issues if the renormalization flow includes an explicit rescaling
of the lattice.

Therefore, we first consider the case where the renormal-
ization flow commutes with translations, which means that it
consists only of decimation with no active rescaling of length.
Explicitly, if Tx is the superoperator implementing a translation
of the state by the lattice vector x, we require that LTx = TxL.

In addition, we require that the renormalization flow
stays inside a submanifold M of local translation-invariant
Hamiltonians, which implies that, for any K ∈ M, B(K) =∑

x bx(K) where the operators bx(K) = Tx[b(K)] act only
on a finite number of sites and Tx is a linear superoperator
implementing a translation by the lattice vector x.

We then define

f (K) =
∑

x

〈b0(K),bx(K)〉K = 〈b(K),B(K)〉K. (11)

This quantity corresponds to the speed density of the flow.
We show that under the above assumptions, it is indeed
nonincreasing along the flow, i.e., d

dt
f (Kt ) � 0. First we

observe that since [Tx,∇ρ] = 0 and Tx(ρ) = ρ, then

〈∇ρby,bx〉 = 〈∇ρTyb,bx〉 = 〈∇ρb,T−ybx〉 = 〈∇ρb,bx−y〉.
(12)

LetBL := ∑
|x|<L bx(K), and VL be the number of translations

satisfying |x| < L. Then Eq. (7) implies

0 � 2〈∇ρBL,BL〉 + Tr [BL�̇ρ(BL)]

=
∑

|y|�L,|x|�L

2〈∇ρb,bx−y〉 + Tr [b�̇ρ(bx−y)]

=
∑

x

fL(x){2〈∇ρb,bx〉 + Tr [b�̇ρ(bx)]},

where fL(x) counts the number of identical elements in the
double sum. It is such that

lim
L→∞

1

VL

∑
x

fL(x){2〈∇ρb,bx〉 + Tr [b�̇ρ(bx)]}

= 2〈∇ρb,B〉 + Tr [b�̇ρ(B)],

which then must also be negative. We conclude by showing
that d

dt
f (Kt ) is equal to that last quantity. The derivative

d
dt

f (Kt )|t=0 is made of three terms, one of which is equal to
Tr [b�̇ρ(B)]. The second term is just 〈b, d

dt
B|0〉 = 〈b,∇B〉 =

〈∇b,B〉 by virtue of Eq. (12). The last term is〈
d

dt
b(Kt )

∣∣∣∣
0

,B
〉

=
∑

x

〈
d

dt
b(Kt )

∣∣∣∣
0

,Txb

〉

=
〈

d

dt
B(Kt )

∣∣∣∣
0

,b

〉

= 〈∇ρ(B),b〉 = 〈∇ρ(b),B〉,
which concludes the proof.
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IV. SCALING

The quantity defined in Eq. (11) may fail to be nonin-
creasing if the flow does not commute with translations. A
simple counterexample is given by the one-dimensional Ising
model with the flow generated by the superoperator L(ρ) =∑

i[Tr i(ρ) − ρ] where the sum is over all lattice sites and Tr i

traces out the ith site and then, for all j � i, replaces the j th
sites by the states of the (j + 1)th site, i.e., it shifts the spins
on the right of the ith in order to fill the gap. A good property
of this renormalization group is that it does not increase
the range of the interactions. Hence the nearest-neighbor
Ising Hamiltonian stays within the manifold of commuting
translation-invariant Hamiltonians acting only on nearest
neighbors, which is three dimensional. The Hamiltonians can
be written as K(J,h,c) = J

∑
i SiSi+1 + h

∑
i Si + c1, where

Si is the diagonal matrix acting on site i with eigenvalues +1
and −1. In finite dimensions, the expectation value of B(K)
would always be zero provided that the semigroup is trace
preserving. However, here one needs to choose the parameter
c so that the free-energy density is zero, i.e., c = − ln Z.

On the stable submanifold defined by c = − ln(2 cosh J )
and h = 0, we have B(K) = ∑

i bi(K) with bi[K(J )] =
−e−J sinh(J )SiSi+1 − ln[2 cosh(J )]1 [17]. We then obtain
f (K) = e−2J [tanh(J )]2. One can check J > 0 always de-
creases along the flow, but f (K) attains a maximum for a
finite J , which indeed contradicts the proposition that f (K)
be always decreasing along the flow.

Generally, the problem with an active scaling is that the
causal past �′ of a region � (with respect to the “dynamics”
E�) would scale as the volume of � rather than its area, and
therefore the difference between 1

�
(ρ�)� and 1

�′ (ρ�)�′ does not
necessarily vanish for large �.

This is a problem because we are generally interested in
renormalization groups which converge to interesting fixed
points. If no scaling is involved together with the removal of
local information, then, strictly speaking, the only possible
fixed points contain no correlations.

Let us sketch a possible way of addressing this problem.
For simplicity, instead of the differential state-independent
quantity f (K), we consider the relative entropy density,

D(ρ‖σ ) = lim
�

1

|�|S(ρ�‖σ�),

where the limit is over the net of subsets � of lattice sites and
ρ� denotes the reduced state on � for a full state ρ.

The idea is that, instead of implementing the scaling
explicitly in the dynamics E�, which is problematic as it
requires an unbounded generator as in the previous example,
we can more simply implement it in the way that we compare
states at different values of �. Because we are dealing with a
relative entropy density, it has a unit: that of inverse distance.
This unit should scale with � appropriately. Assuming that L�

is chosen so that E� erases information about a scale � so that
if ε is the lattice spacing then Eε(ρ) = ρ, we define

D�(ρ�‖σ�) := �dD(ρ�‖σ�),

where d is the number of spatial dimensions. This quantity
has no unit. This tool allows us to say that two states ρ and
σ converge “to the same fixed point” if lims→∞ D�(ρ�‖σ�) =

0. The fixed point itself is represented only as the resulting
equivalence class of states.

This quantity does not generally decrease with �. Indeed,
we have

d

d�
D�(ρ�‖σ�) = d

�
D�(ρ�‖σ�) + �d d

d�
D(ρ�‖σ�). (13)

In general we only expect that the last term is negative (or zero),
but we do not know that it is negative enough to compensate for
the positivity of the first term d

�
D�(ρ�‖σ�). However, a simple

argument suggests that this term can be canceled by adding
the right amount of depolarization to the coarse-graining
procedure. Let K�(ρ) = d

�

∑
i[Di(ρ) − ρ], where Di is the

application of the depolarization map D(ρ) = Tr (ρ)1/Tr 1
to the ith site and d is the dimension of space. Let ρ� be the
state evolved under the dynamics generated by L′

� = L� + K�.
Furthermore, we write ρ�,ε = ρ� + εK�(ρ�). From the joint
convexity of the relative entropy we obtain, to first order in ε,

S[(ρ�,ε)�‖(σ�,ε)�] �
(

1 − ε|�|d
�

)
S[(ρ�)�‖(σ�)�]

+ ε
d

�

∑
i

S[(ρ�)�\i‖(σ�)�\i]

= S� − ε
d

�

∑
i

(S� − S�\i),

where we abbreviated S� = S[(ρ�)�‖(σ�)�] and �\i is the
region � without the site i. Since also the derivate of the
relative entropy is negative with respect to the generator L�,
we have altogether,

d

d�

1

|�|S� � −d

�

1

|�|
∑

i

(S� − S�\i).

Since, for large � we expect S�  |�|D(ρ�‖σ�), then in the
thermodynamic limit, we ought to have

d

d�
D(ρ�‖σ�) � −d

s
D(ρ�‖σ�),

which, using Eq. (13), would imply that d
d�

D�(ρ�‖σ�) � 0.

V. EXAMPLE

Here we introduce an example of a Lindblad generator
which can be defined on any lattice and generates a renormal-
ization flow which commutes with translations (and hence does
no active rescaling). Given this property, the quantity defined
in Eq. (11) is nonincreasing. The Lindblad generator is

L(ρ) =
∑
ij

[UijρU
†
ij − ρ], (14)

where the sum is over all neighboring pairs of spins on the
lattice and Uij denotes the unitary map swapping sites i and j .

The interpretation of this generator is that, after a short
“time” ε, we have a probability ε of confusing any given
neighboring pair of sites, hence losing short-scale information.
In fact, as we will see, a finite time t amounts to erasing infor-
mation up to a length scale � ∝ √

t . Hence the corresponding
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FIG. 2. The quantity f (K) defined in Eq. (11) (per lattice unit)
versus the temperature in units of J/kB for the two-dimensional Ising
model on periodic square lattices computed using a Monte Carlo
simulation. The vertical dashed line represents the exact transition
temperature τc. The different curves correspond to lattice sizes
102, 202, and 402. The fitting function is of the form a/τ 2.1 (dashed
curve) for τ > τc and c − d(τc − τ )e for τ < τc, convoluted with a
Gaussian to account for the finite-size effect.

generator for the flow in terms of the length scale � is
L� = �

ε2 L, where ε is the lattice spacing.
The fixed points of this generator, i.e., states σ such that

L(σ ) = 0, are precisely the states invariant under permutations
of any two sites. According to the quantum de Finetti theorem,
this implies that any reduced state on a finite number of sites
has the form

∫
dμ(ρ) ρ⊗N where μ is a probability measure

on mixed states. Hence, due to the absence of active rescaling,
the exact fixed points all correspond to mean-field theories.
More interesting critical states must be identified through the
asymptotic behavior of the flow under a passive rescaling of
the lattice spacing, i.e., in the continuum limit.

Let us study the effect of the semigroup on a one-
dimensional lattice. It is best interpreted in the Heisenberg
picture where it maps observables of the effective coarse-
grained theory to actual physical observables of the micro-
scopic theory. For instance, the action of the generator on an
observable ai at site i is L†(ai) = ai+1 − 2ai + ai−1.

We recognize a finite-difference approximation of a dif-
fusion equation. Therefore, for long time t , we expect
that any local operator of the form a(f ) = ∑

i fiai , where

fi > 0 and
∑

i fi = 1, will be mapped to etL†
[a(f )] 

1√
4πt

∑
k e−[(k−i)2]/4t ak . In particular, we see that the physical

resolution of our observables filtered by etL = exp (
∫ �

ε
Ludu)

is indeed � = ε
√

t .
Figure 2 shows the nonincreasing quantity defined in

Eq. (11) for the two-dimensional Ising model on a square
lattice computed using a Monte Carlo simulation. We see that
it peaks at the transition temperature and does not appear to
diverge.

To conclude with this example, let us also show that
different fixed points of L� are still distinguishable in terms
of the rescaled relative entropy density D�, even when the
depolarization generator K� introduced above is added to L�.
For instance, consider mean-field states of the form ρ⊗N and
σ⊗N , where N is the number of lattice sites and ρ and σ are
single-site states. First, observe thatL� andK� commute. Since
these states are invariant under L�, the action of the channel,

E� = exp

[∫ �

ε

(Lu + Ku)du

]

= exp

(∫ �

ε

Kudu

)
exp

(∫ �

ε

Ludu

)
,

on these states is simply given by the depolarizing maps which
acts independently on each site. Because the relative entropy
is additive on product states, we obtain

D�[E�(ρ⊗∞)‖E�(σ⊗∞)] = �d

εd
S(ρ�‖σ�),

where ρ� = εd

�d ρ + (1 − εd

�d ) 1
Tr 1 .

Using the joint concavity of the relative entropy for the
upper bound and the relation 1

2 (‖ρ − σ‖1)2 � S(ρ‖σ ) (see
Ref. [18]) for the lower bound, we obtain

1
2 (‖ρ − σ‖1)2 � D�[E�(ρ⊗∞)‖E�(σ⊗∞)] � S(ρ‖σ ).

In particular, the lower bound shows that the distance
between different mean-field states is asymptotically finite,
which shows that this renormalization procedure with passive
rescaling can, at the very least, distinguish between different
mean-field phases.
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