57 research outputs found

    Cognitive control modulates preferential sensory processing of affective stimuli

    Get PDF
    Adaptive human behavior crucially relies on the ability of the brain to allocate resources automatically to emotionally significant stimuli. This ability has consistently been demonstrated by studies showing preferential processing of affective stimuli in sensory cortical areas. It is still unclear, however, whether this putatively automatic mechanism can be modulated by cognitive control processes. Here, we use functional magnetic resonance imaging (fMRI) to investigate whether preferential processing of an affective face distractor is suppressed when an affective distractor has previously elicited a response conflict in a word-face Stroop task. We analyzed this for three consecutive stages in the ventral stream of visual processing for which preferential processing of affective stimuli has previously been demonstrated: the striate area (BA 17), category-unspecific extrastriate areas (BA 18/19), and the fusiform face area (FFA). We found that response conflict led to a selective suppression of affective face processing in category-unspecific extrastriate areas and the FFA, and this effect was accompanied by changes in functional connectivity between these areas and the rostral anterior cingulate cortex. In contrast, preferential processing of affective face distractors was unaffected in the striate area. Our results indicate that cognitive control processes adaptively suppress preferential processing of affective stimuli under conditions where affective processing is detrimental because it elicits response conflict

    Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes

    Get PDF
    The rising proportion of elderly people worldwide will yield an increased incidence of age-associated cognitive impairments, imposing major burdens on societies. Consequently, growing interest emerged to evaluate new strategies to delay or counteract cognitive decline in aging. Here, we assessed immediate effects of anodal transcranial direct current stimulation (atDCS) on cognition and previously described detrimental changes in brain activity attributable to aging. Twenty healthy elderly adults were assessed in a crossover shamcontrolled design using functional magnetic resonance imaging (fMRI) and concurrent transcranial DCS administered to the left inferior frontal gyrus. Effects on performance and task-related brain activity were evaluated during overt semantic word generation, a task that is negatively affected by advanced age. Task-absent resting-state fMRI (RS-fMRI) assessed atDCS-induced changes at the network level independent of performance. Twenty matched younger adults served as controls. During sham stimulation, task-related fMRI demonstrated that enhanced bilateral prefrontal activity in older adults was associated with reduced performance. RS-fMRI revealed enhanced anterior and reduced posterior functional brain connectivity. atDCS significantly improved performance in older adults up to the level of younger controls; significantly reduced task-related hyperactivity in bilateral prefrontal cortices, the anterior cingulate gyrus, and the precuneus; and induced a more "youth-like" connectivity pattern during RS-fMRI. Our results provide converging evidence from behavioral analysis and two independent functional imaging paradigms that a single session of atDCS can temporarily reverse nonbeneficial effects of aging on cognition and brain activity and connectivity. These findings may translate into novel treatments to ameliorate cognitive decline in normal aging in the future

    The representation of the verb's argument structure as disclosed by fMRI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the composition of an event the verb's argument structure defines the number of participants and their relationships. Previous studies indicated distinct brain responses depending on how many obligatory arguments a verb takes. The present functional magnetic resonance imaging (fMRI) study served to verify the neural structures involved in the processing of German verbs with one (e.g. "snore") or three (e.g. "gives") argument structure. Within a silent reading design, verbs were presented either in isolation or with a minimal syntactic context ("snore" vs. "Peter snores").</p> <p>Results</p> <p>Reading of isolated one-argument verbs ("snore") produced stronger BOLD responses than three-argument verbs ("gives") in the inferior temporal fusiform gyrus (BA 37) of the left hemisphere, validating previous magnetoencephalographic findings. When presented in context one-argument verbs ("Peter snores") induced more pronounced activity in the inferior frontal gyrus (IFG) of the left hemisphere than three-argument verbs ("Peter gives").</p> <p>Conclusion</p> <p>In line with previous studies our results corroborate the left temporal lobe as site of representation and the IFG as site of processing of verbs' argument structure.</p

    Electrical Brain Stimulation Improves Cognitive Performance by Modulating Functional Connectivity and Task-Specific Activation

    Get PDF
    Excitatory anodal transcranial direct current stimulation (atDCS) can improve human cognitive functions, but neural underpinnings of its mode of action remain elusive. In a cross-over placebo ("sham") controlled study we used functional magnetic resonance imaging (fMRI) to investigate neurofunctional correlates of improved language functions induced by atDCS over a core language area, the left inferior frontal gyrus (IFG). Intrascanner transcranial direct current stimulation-induced changes in overt semantic word generation assessed behavioral modulation; task-related and task-independent (resting-state) fMRI characterized language network changes. Improved word-retrieval during atDCS was paralleled by selectively reduced task-related activation in the left ventral IFG, an area specifically implicated in semantic retrieval processes. Under atDCS, resting-state fMRI revealed increased connectivity of the left IFG and additional major hubs overlapping with the language network. In conclusion, atDCS modulates endogenous low-frequency oscillations in a distributed set of functionally connected brain areas, possibly inducing more efficient processing in critical task-relevant areas and improved behavioral performance

    Neural Signatures of Semantic and Phonemic Fluency in Young and Old Adults

    Get PDF
    As we age, our ability to select and produce words changes, yet we know little about the underlying neural substrate of word-finding difficulties in old adults. The present study was designed to elucidate changes in specific frontally mediated retrieval processes involved in word-finding difficulties associated with advanced age. We implemented two overt verbal (semantic and phonemic) fluency tasks during functional magnetic resonance imaging and compared brain activity patterns of old and young adults. Performance during the phonemic task was comparable for both age-groups and mirrored by strongly left lateralized (frontal) activity patterns. On the other hand, a significant drop of performance during the semantic task in the older goup was accompanied by additional right (inferior and middle) frontal activity, which was negatively correlated with performance. Moreover, the younger group recruited different subportions of the left inferior frontal gyrus for both fluency tasks, while the older participants failed to show this distinction. Thus, functional integrity and efficient recruitment of left frontal language areas seems to be critical for successful word-retrieval in old age

    Thirst and the state-dependent representation of incentive stimulus value in human motive circuitry

    Get PDF
    Abstract Depletion imposes both need and desire to drink, and potentiates the response to need-relevant cues in the environment. The present fMRI study aimed to determine which neural structures selectively increase the incentive value of needrelevant stimuli in a thirst state. Towards this end, participants were scanned twice-either in a thirst or no-thirst statewhile viewing pictures of beverages and chairs. As expected, thirst led to a selective increase in self-reported pleasantness and arousal by beverages. Increased responses to beverage when compared with chair stimuli were observed in the cingulate cortex, insular cortex and the amygdala in the thirst state, which were absent in the no-thirst condition. Enhancing the incentive value of need-relevant cues in a thirst state is a key mechanism for motivating drinking behavior. Overall, distributed regions of the motive circuitry, which are also implicated in salience processing, craving and interoception, provide a dynamic body-state dependent representation of stimulus value

    Brain regions essential for improved lexical access in an aged aphasic patient: a case report

    Get PDF
    BACKGROUND: The relationship between functional recovery after brain injury and concomitant neuroplastic changes is emphasized in recent research. In the present study we aimed to delineate brain regions essential for language performance in aphasia using functional magnetic resonance imaging and acquisition in a temporal sparse sampling procedure, which allows monitoring of overt verbal responses during scanning. CASE PRESENTATION: An 80-year old patient with chronic aphasia (2 years post-onset) was investigated before and after intensive language training using an overt picture naming task. Differential brain activation in the right inferior frontal gyrus for correct word retrieval and errors was found. Improved language performance following therapy was mirrored by increased fronto-thalamic activation while stability in more general measures of attention/concentration and working memory was assured. Three healthy age-matched control subjects did not show behavioral changes or increased activation when tested repeatedly within the same 2-week time interval. CONCLUSION: The results bear significance in that the changes in brain activation reported can unequivocally be attributed to the short-term training program and a language domain-specific plasticity process. Moreover, it further challenges the claim of a limited recovery potential in chronic aphasia, even at very old age. Delineation of brain regions essential for performance on a single case basis might have major implications for treatment using transcranial magnetic stimulation

    Die neuronale Verarbeitung emotionaler Bilder: Evidenz aus evozierten Potenzialen und funktioneller Magnetresonanztomographie

    No full text
    Die vorliegende Arbeit untersucht die neuronale Verarbeitung emotionaler Bildreize. In früheren Studien wurde gezeigt, dass passiv betrachtete emotionale Bilder potente Auslöser für eine Reihe neurophysiologischer Prozesse darstellen. Bei Untersuchungen mittels funktionell-bildgebender Verfahren wurde festgestellt, dass emotionale im Vergleich zu affektiv neutralen Bildinhalten differenzierte neuronale Aktivierungsmuster induzieren. Darüber hinaus gelang es mit Hilfe von elektrophysiologischen Untersuchungsmethoden, distinkte emotions-sensitive Unterprozesse voneinander zu unterscheiden. Die vorliegende Arbeit erweitert diese Forschung durch die Untersuchung zweier Aspekte der emotionalen Verarbeitung.Im ersten Teil wird der Frage nachgegangen, inwieweit die bekannten Effekte selektiver neuronaler Enkodierung emotionaler Bildreize von deren evolutionären Bedeutsamkeit abhängig sind. Es werden zwei Studien vorgestellt, die sich methodisch der Funktionellen Kernspintomographie, bzw. Ereigniskorrelierter Potenziale bedienen. Hierbei werden erstmals emotional bedeutungshaltige symbolische Handgesten im Bereich der Emotionsforschung untersucht. Die Verarbeitung emotionaler Gesten war zum einen durch eine erhöhte Aktivation extra-striärer Kortexareale, sowie zum anderen durch eine spezifische Modulation früher elektrokortikaler Indikatoren emotionaler Verarbeitungsprozesse gekennzeichnet. Durch die Einführung dieser neuen Reizklasse wird gezeigt, dass selektive Reizverarbeitung im Gehirn nicht auf evolutionär bedeutsame Stimuli beschränkt ist, sondern auch durch ontogenetisch erworbene emotionale Signifikanz ausgelöst wird.Im zweiten Abschnitt wird untersucht, ob die Verarbeitung affektiver Stimuli zeitlichen Interferenz-Effekten unterliegt wenn Bilder unterschiedlichen emotionalen Gehalts in schneller Aufeinanderfolge präsentiert werden. Die hier berichteten Ergebnisse aus zwei EEG-Studien zeigen, dass sowohl frühe, als auch spätere emotions-sensitive EEG-Komponenten mit einer Verminderung ihrer Amplitude als Funktion der Emotionalität unmittelbar vorhergehender Bildreize einhergehen. Diese Resultate sind sowohl mit der Hypothese der sequenziellen Interferenz, als auch der Annahme distinkter Unterprozesse bei der neuronalen Verarbeitung emotionaler Bildreize vereinbar

    Raised Middle-Finger: Electrocortical Correlates of Social Conditioning with Nonverbal Affective Gestures

    Get PDF
    Humans form impressions of others by associating persons (faces) with negative or positive social outcomes. This learning process has been referred to as social conditioning. In everyday life, affective nonverbal gestures may constitute important social signals cueing threat or safety, which therefore may support aforementioned learning processes. In conventional aversive conditioning, studies using electroencephalography to investigate visuocortical processing of visual stimuli paired with danger cues such as aversive noise have demonstrated facilitated processing and enhanced sensory gain in visual cortex. The present study aimed at extending this line of research to the field of social conditioning by pairing neutral face stimuli with affective nonverbal gestures. To this end, electro-cortical processing of faces serving as different conditioned stimuli was investigated in a differential social conditioning paradigm. Behavioral ratings and visually evoked steady-state potentials (ssVEP) were recorded in twenty healthy human participants, who underwent a differential conditioning procedure in which three neutral faces were paired with pictures of negative (raised middle finger), neutral (pointing), or positive (thumbs-up) gestures. As expected, faces associated with the aversive hand gesture (raised middle finger) elicited larger ssVEP amplitudes during conditioning. Moreover, theses faces were rated as to be more arousing and unpleasant. These results suggest that cortical engagement in response to faces aversively conditioned with nonverbal gestures is facilitated in order to establish persistent vigilance for social threat-related cues. This form of social conditioning allows to establish a predictive relationship between social stimuli and motivationally relevant outcomes
    • …
    corecore