5 research outputs found

    Angle-resolved photoemission study and first principles calculation of the electronic structure of GaTe

    Full text link
    The electronic band structure of GaTe has been calculated by numerical atomic orbitals density-functional theory, in the local density approximation. In addition, the valence-band dispersion along various directions of the GaTe Brillouin zone has been determined experimentally by angle-resolved photoelectron spectroscopy. Along these directions, the calculated valence-band structure is in good concordance with the valence-band dispersion obtained by these measurements. It has been established that GaTe is a direct-gap semiconductor with the band gap located at the Z point, that is, at Brillouin zone border in the direction perpendicular to the layers. The valence-band maximum shows a marked \textit{p}-like behavior, with a pronounced anion contribution. The conduction band minimum arises from states with a comparable \textit{s}- \textit{p}-cation and \textit{p}-anion orbital contribution. Spin-orbit interaction appears to specially alter dispersion and binding energy of states of the topmost valence bands lying at Γ\Gamma. By spin-orbit, it is favored hybridization of the topmost \textit{p}z_z-valence band with deeper and flatter \textit{px_x}-\textit{py_y} bands and the valence-band minimum at Γ\Gamma is raised towards the Fermi level since it appears to be determined by the shifted up \textit{px_x}-\textit{py_y} bands.Comment: 7 text pages, 6 eps figures, submitted to PR

    Obesity Indexes and Total Mortality among Elderly Subjects at High Cardiovascular Risk: The PREDIMED Study

    Get PDF
    BackgroundDifferent indexes of regional adiposity have been proposed for identifying persons at higher risk of death. Studies specifically assessing these indexes in large cohorts are scarce. It would also be interesting to know whether a dietary intervention may counterbalance the adverse effects of adiposity on mortality.MethodsWe assessed the association of four different anthropometric indexes (waist-to-height ratio (WHtR), waist circumference (WC), body mass index (BMI) and height) with all-cause mortality in 7447 participants at high cardiovascular risk from the PREDIMED trial. Forty three percent of them were men (55 to 80 years) and 57% were women (60 to 80 years). All of them were initially free of cardiovascular disease. The recruitment took place in 11 recruiting centers between 2003 and 2009.ResultsAfter adjusting for age, sex, smoking, diabetes, hypertension, intervention group, family history of coronary heart disease, and leisure-time physical activity, WC and WHtR were found to be directly associated with a higher mortality after 4.8 years median follow-up. The multivariable-adjusted HRs for mortality of WHtR (cut-off points: 0.60, 0.65, 0.70) were 1.02 (0.78–1.34), 1.30 (0.97–1.75) and 1.55 (1.06–2.26). When we used WC (cut-off points: 100, 105 and 110 cm), the multivariable adjusted Hazard Ratios (HRs) for mortality were 1.18 (0.88–1.59), 1.02 (0.74–1.41) and 1.57 (1.19–2.08). In all analyses, BMI exhibited weaker associations with mortality than WC or WHtR. The direct association between WHtR and overall mortality was consistent within each of the three intervention arms of the trial.ConclusionsOur study adds further support to a stronger association of abdominal obesity than BMI with total mortality among elderly subjects at high risk of cardiovascular disease. We did not find evidence to support that the PREDIMED intervention was able to counterbalance the harmful effects of increased adiposity on total mortality.Trial RegistrationControlled-Trials.com ISRCTN3573963

    CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems

    Full text link
    [EN] The third-order iterative method designed by Weerakoon and Fernando includes the arithmetic mean of two functional evaluations in its expression. Replacing this arithmetic mean with different means, other iterative methods have been proposed in the literature. The evolution of these methods in terms of order of convergence implies the inclusion of a weight function for each case, showing an optimal fourth-order convergence, in the sense of Kung-Traub's conjecture. The analysis of these new schemes is performed by means of complex dynamics. These methods are applied on the solution of the nonlinear Colebrook-White equation and the nonlinear system of the equilibrium conversion, both frequently used in Chemistry.This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER/UE) and Generalitat Valenciana PROMETEO/2016/089.Chicharro, FI.; Cordero Barbero, A.; Martínez, TH.; Torregrosa Sánchez, JR. (2020). CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems. Journal of Mathematical Chemistry. 58(3):555-572. https://doi.org/10.1007/s10910-019-01085-2S555572583O. Ababneh, New Newton’s method with third order convergence for solving nonlinear equations. World Acad. Sci. Eng. Technol. 61, 1071–1073 (2012)S. Amat, S. Busquier, Advances in iterative methods for nonlinear equations, chapter 5. SEMA SIMAI Springer Series. (Springer, Berlin, 2016), vol. 10, pp. 79–111R. Behl, Í. Sarría, R. González, Á.A. Magreñán, Highly efficient family of iterative methods for solving nonlinear models. J. Comput. Appl. Math. 346, 110–132 (2019)B. Campos, J. Canela, P. Vindel, Convergence regions for the Chebyshev-Halley family. Commun. Nonlinear Sci. Numer. Simul. 56, 508–525 (2018)F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 780513, 1–11 (2013)F.I. Chicharro, A. Cordero, J.R. Torregrosa, Dynamics of iterative families with memory based on weight functions procedure. J. Comput. Appl. Math. 354, 286–298 (2019)C.F. Colebrook, C.M. White, Experiments with fluid friction in roughened pipes. Proc. R. Soc. Lond. 161, 367–381 (1937)A. Constantinides, N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications (Prentice-Hall, Englewood Cliffs, 1999)A. Cordero, J. Franceschi, J.R. Torregrosa, A.C. Zagati, A convex combination approach for mean-based variants of Newton’s method. Symmetry 11, 1062 (2019)A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21, 643–651 (1974)T. Lukić, N. Ralević, Geometric mean Newton’s method for simple and multiple roots. Appl. Math. Lett. 21, 30–36 (2008)A. Özban, Some new variants of Newton’s method. Appl. Math. Lett. 17, 677–682 (2004)M. Petković, B. Neta, L. Petković, J. Dz̆unić, Multipoint Methods for Solving Nonlinear Equations (Academic Press, Cambridge, 2013)E. Shashi, Transmission Pipeline Calculations and Simulations Manual, Fluid Flow in Pipes (Elsevier, London, 2015), pp. 149–234M.K. Singh, A.K. Singh, A new-mean type variant of Newton’s method for simple and multiple roots. Int. J. Math. Trends Technol. 49, 174–177 (2017)K. Verma, On the centroidal mean Newton’s method for simple and multiple roots of nonlinear equations. Int. J. Comput. Sci. Math. 7, 126–143 (2016)S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)Z. Xiaojian, A class of Newton’s methods with third-order convergence. Appl. Math. Lett. 20, 1026–1030 (2007
    corecore