27 research outputs found

    Lightweight data management with dtool

    Get PDF
    The explosion in volumes and types of data has led to substantial challenges in data management. These challenges are often faced by front-line researchers who are already dealing with rapidly changing technologies and have limited time to devote to data management. There are good high-level guidelines for managing and processing scientific data. However, there is a lack of simple, practical tools to implement these guidelines. This is particularly problematic in a highly distributed research environment where needs differ substantially from group to group and centralised solutions are difficult to implement and storage technologies change rapidly. To meet these challenges we have developed dtool, a command line tool for managing data. The tool packages data and metadata into a unified whole, which we call a dataset. The dataset provides consistency checking and the ability to access metadata for both the whole dataset and individual files. The tool can store these datasets on several different storage systems, including a traditional file system, object store (S3 and Azure) and iRODS. It includes an application programming interface that can be used to incorporate it into existing pipelines and workflows. The tool has provided substantial process, cost, and peace-of-mind benefits to our data management practices and we want to share these benefits. The tool is open source and available freely online at http://dtool.readthedocs.io

    jicbioimage: a tool for automated and reproducible bioimage analysis

    Get PDF
    ABSTRACT There has been steady improvement in methods for capturing bioimages. However analysing these images still remains a challenge. The Python programming language provides a powerful and flexible environment for scientific computation. It has a wide range of supporting libraries for image processing but lacks native support for common bioimage formats, and requires specific code to be written to ensure that suitable audit trails are generated and analyses are reproducible. Here we describe the development of a Python tool that: (1) allows users to quickly view and explore microscopy data; (2) generate reproducible analyses, encoding a complete history of image transformations from raw data to final result; and (3) scale up analyses from initial exploration to high throughput processing pipelines, with a minimal amount of extra effort. The tool, jicbioimage, is open source and freely available online a

    Ectopic BASL Reveals Tissue Cell Polarity throughout Leaf Development in Arabidopsis thaliana

    Get PDF
    Tissue-wide polarity fields, in which cell polarity is coordinated across the tissue, have been described for planar organs such as the Drosophila wing and are considered important for coordinating growth and differentiation [1]. In planar plant organs, such as leaves, polarity fields have been identified for subgroups of cells, such as stomatal lineages [2], trichomes [3, 4], serrations [5], or early developmental stages [6]. Here, we show that ectopic induction of the stomatal protein BASL (BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE) reveals a tissue-wide epidermal polarity field in leaves throughout development. Ectopic GFP-BASL is typically localized toward the proximal end of cells and to one lobe of mature pavement cells, revealing a polarity field that aligns with the proximodistal axis of the leaf (base to tip). The polarity field is largely parallel to the midline of the leaf but diverges in more lateral positions, particularly at later stages in development, suggesting it may be deformed during growth. The polarity field is observed in the speechless mutant, showing that it is independent of stomatal lineages, and is observed in isotropic cells, showing that cell shape anisotropy is not required for orienting polarity. Ectopic BASL forms convergence and divergence points at serrations, mirroring epidermal PIN polarity patterns, suggesting a common underlying polarity mechanism. Thus, we show that similar to the situation in animals, planar plant organs have a tissue-wide cell polarity field, and this may provide a general cellular mechanism for guiding growth and differentiation

    The good, the bad and the twisted: a survey of ligand geometry in protein crystal structures

    Get PDF
    The protein databank now contains the structures of over 11,000 ligands bound to proteins. These structures are invaluable in applied areas such as structure-based drug design, but are also the substrate for understanding the energetics of intermolecular interactions with proteins. Despite their obvious importance, the careful analysis of ligands bound to protein structures lags behind the analysis of the protein structures themselves. We present an analysis of the geometry of ligands bound to proteins and highlight the role of small molecule crystal structures in enabling molecular modellers to critically evaluate a ligand model’s quality and investigate protein-induced strain

    Rust expression browser: an open source database for simultaneous analysis of host and pathogen gene expression profiles with expVIP

    Get PDF
    BackgroundTranscriptomics is being increasingly applied to generate new insight into the interactions between plants and their pathogens. For the wheat yellow (stripe) rust pathogen (Puccinia striiformis f. sp. tritici, Pst) RNA-based sequencing (RNA-Seq) has proved particularly valuable, overcoming the barriers associated with its obligate biotrophic nature. This includes the application of RNA-Seq approaches to study Pst and wheat gene expression dynamics over time and the Pst population composition through the use of a novel RNA-Seq based surveillance approach called "field pathogenomics". As a dual RNA-Seq approach, the field pathogenomics technique also provides gene expression data from the host, giving new insight into host responses. However, this has created a wealth of data for interrogation.ResultsHere, we used the field pathogenomics approach to generate 538 new RNA-Seq datasets from Pst-infected field wheat samples, doubling the amount of transcriptomics data available for this important pathosystem. We then analysed these datasets alongside 66 RNA-Seq datasets from four Pst infection time-courses and 420 Pst-infected plant field and laboratory samples that were publicly available. A database of gene expression values for Pst and wheat was generated for each of these 1024 RNA-Seq datasets and incorporated into the development of the rust expression browser (http://www.rust-expression.com). This enables for the first time simultaneous 'point-and-click' access to gene expression profiles for Pst and its wheat host and represents the largest database of processed RNA-Seq datasets available for any of the three Puccinia wheat rust pathogens. We also demonstrated the utility of the browser through investigation of expression of putative Pst virulence genes over time and examined the host plants response to Pst infection.ConclusionsThe rust expression browser offers immense value to the wider community, facilitating data sharing and transparency and the underlying database can be continually expanded as more datasets become publicly available

    A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses

    Get PDF
    Plants sense microbial signatures via activation of pattern recognition receptors (PPRs), which trigger a range of cellular defences. One response is the closure of plasmodesmata, which reduces symplastic connectivity and the capacity for direct molecular exchange between host cells. Plasmodesmal flux is regulated by a variety of environmental cues but the downstream signalling pathways are poorly defined, especially the way in which calcium regulates plasmodesmal closure. Here, we identify that closure of plasmodesmata in response to bacterial flagellin, but not fungal chitin, is mediated by a plasmodesmal-localized Ca2+ -binding protein Calmodulin-like 41 (CML41). CML41 is transcriptionally upregulated by flg22 and facilitates rapid callose deposition at plasmodesmata following flg22 treatment. CML41 acts independently of other defence responses triggered by flg22 perception and reduces bacterial infection. We propose that CML41 enables Ca2+ -signalling specificity during bacterial pathogen attack and is required for a complete defence response against Pseudomonas syringae.Bo Xu, Cecilia Cheval, Anuphon Laohavisit, Bradleigh Hocking, David Chiasson, Tjelvar S. G. Olsson, Ken Shirasu, Christine Faulkner and Matthew Gilliha

    An Informatics Approach to Investigating Structure-Thermodynamic Correlations in Protein-Ligand Interactions

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    jicbioimage: a tool for automated and reproducible bioimage analysis

    No full text
    There has been steady improvement in methods for capturing bioimages. However analysing these images still remains a challenge. The Python programming language provides a powerful and flexible environment for scientific computation. It has a wide range of supporting libraries for image processing but lacks native support for common bioimage formats, and requires specific code to be written to ensure that suitable audit trails are generated and analyses are reproducible. Here we describe the development of a Python tool that: (1) allows users to quickly view and explore microscopy data; (2) generate reproducible analyses, encoding a complete history of image transformations from raw data to final result; and (3) scale up analyses from initial exploration to high throughput processing pipelines, with a minimal amount of extra effort. The tool, jicbioimage, is open source and freely available online at http://jicbioimage.readthedocs.io

    Sub-pocket analysis method for Fragment-Based Drug Discovery

    No full text
    Although two binding sites might be overall dissimilar, they might still bind the same fragments if they share suitable sub-pockets. Information about shared sub-pockets can be used in fragment-based drug design to suggest new fragments or to replace existing fragments within an already known compound. A novel computational method called SubCav was developed which allows the similarity searching and alignment of sub-pockets from a PDB-wide database against a user-defined query. The method is based on pharmacophoric fingerprints combined with a sub-pocket alignment algorithm. SubCav was shown to be efficient in producing reasonable alignments for sub-pockets with low sequence similarity and be able to retrieve prospectively relevant sub-pockets from a large database even with different folds. It could also be used to analyze sub-pockets inside a protein family to facilitate drug design and selectivity rationalization
    corecore