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ABSTRACT
The explosion in volumes and types of data has led to substantial challenges in data
management. These challenges are often faced by front-line researchers who are
already dealing with rapidly changing technologies and have limited time to devote to
data management. There are good high-level guidelines for managing and processing
scientific data. However, there is a lack of simple, practical tools to implement
these guidelines. This is particularly problematic in a highly distributed research
environment where needs differ substantially from group to group and centralised
solutions are difficult to implement and storage technologies change rapidly. To meet
these challenges we have developed dtool, a command line tool for managing data.
The tool packages data and metadata into a unified whole, which we call a dataset.
The dataset provides consistency checking and the ability to access metadata for both
the whole dataset and individual files. The tool can store these datasets on several
different storage systems, including a traditional file system, object store (S3 and Azure)
and iRODS. It includes an application programming interface that can be used to
incorporate it into existing pipelines and workflows. The tool has provided substantial
process, cost, and peace-of-mind benefits to our data management practices and we
want to share these benefits. The tool is open source and available freely online at
http://dtool.readthedocs.io.

Subjects Bioinformatics, Computational Biology, Genomics
Keywords Data management, Reproducibility, Bioinformatics, Data processing

INTRODUCTION
Science is an empirical discipline and therefore requires careful datamanagement. Advances
in our ability to capture and store data have resulted in a ‘‘big data explosion’’. This is
particularly true in biology and has resulted in data management becoming one of the big
challenges faced by the biological sciences (Howe et al., 2008; Stephens et al., 2015; Cook
et al., 2018).

Data management is a broad term and means different things to different people. At a
high level, funders and the research community care about data being trusted, shared and
reusable (Vision, 2010; Wilkinson et al., 2016; Waard, Cousijn & Aalbersberg, 2018, Leek,
2018). At an intermediate level, research institutes and principal investigators need to think
about the life cycle of data (Lynch, 2008;Michener, 2015), and how to get the resources they
need for it. At the ground level individual researchers need to think about how to structure
their data into files, how these data files are to be organised and how to associate metadata
with these data files (Hart et al., 2016;Wickham, 2014; Leek, 2018).

How to cite this article Olsson TSG, Hartley M. 2019. Lightweight data management with dtool. PeerJ 7:e6562
http://doi.org/10.7717/peerj.6562

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201186731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://peerj.com
mailto:tjelvar.olsson@jic.ac.uk
mailto:matthew.hartley@jic.ac.uk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.6562
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dtool.readthedocs.io
http://doi.org/10.7717/peerj.6562


Traditional scientific data management consists of individual researchers recording
observations in laboratory notebooks. At another end of the spectrum, there are
organisations dedicated to curating and hosting scientific data, examples from our field
(biology) include the EBI (Cook et al., 2018), UniProt (The UniProt Consortium, 2017) and
the Sequence Read Archive (Leinonen, Sugawara & Shumway, 2011).

In between these two solutions, there is a variety of systems aimed at simplifying data
management for particular types of data. Laboratory Information Management Systems
provide ways to manage and categorise certain types of data. Traditionally these were
oriented towards sample management and they often rely on central databases. More
specialised systems for managing data produced by certain types of instruments also exist.
OMERO (Allan et al., 2012), for example, is a system aimed at managing microscopy data.
These systems also tend to rely on central databases.

More generic solutions for managing data exist. One example is iRODS (Rajasekar et al.,
2015), which provides the ability to build up capacious storage solutions by allowing access
to distributed storage assets and associating data items with metadata stored in a central
database. Another example is openBIS (Bauch et al., 2011), a framework for constructing
information systems for managing biological data. OpenBIS is similar to iRODS in that it
is a hybrid data repository with metadata stored in a database for fast querying and data as
flat files. These systems are flexible, but require effort to customise (Chiang et al., 2011).

A generic format for structuring data without the need for a central database is BagIt
(Kunze et al., 2018). BagIt is a set of hierarchical file layout conventions designed to make
data storage and transfer safer. It is used in digital curation, particularly within libraries.

However, despite all these offerings there is a lack of tools for basic data management at
the level of research institutes, research groups and individual researchers.

Our motivations
Our data management challenges occur at the John Innes Centre (JIC), an independent
research institute in plant and microbial sciences. Like many research institutions, the JIC
has a strongly decentralised structure and culture. The 40+ research groups act mostly as
independent units.

This poses a significant challenge to any data management process, and renders many
existing solutions, which rely on enforced compliance with centralised systems, difficult
to use.

This also tends to lead to situations where key metadata are encoded in file names and
paths, metadata which can easily be lost when files are moved. Coupled with concern about
actual data loss/corruption when moving files, this leads to reluctance to archive data. As
a result, storage systems become full and data accumulates.

The JIC has a mixture of different storage technologies bought at different times. Each
technology has its own quirks with which the end user needs to gain familiarity. For
example, access to data on a file system and object-based storage work differently, user and
group management varies from system to system and some technologies provide the ability
to access deleted files while others do not. Having to manage different storage systems is
not a productive use of researcher’s time.
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We needed a solution that would:

• Provide clear, immediate benefit to the front line data managers, such as core facility
staff or bioinformaticians embedded in research groups.

• Allow group leaders and institute management to get an overview of the data they have.
• Enable use of different storage systems and technologies, without changing tools and
pipelines.

The solution needed to be easy to use to get users started without a long learning process.
It also needed to avoid lengthy migration of data to centralised platforms.

These are all common requirements for those managing data in heterogeneous research
environments. Therefore any solution that meets these needs is likely to be valuable
to a wide range of researchers and support groups, particularly those without existing
centralised data management systems.

Here we describe our lightweight approach to managing data. It centers around the
concept of packaging metadata with data, and working with the two as a unified, portable
whole.

METHODOLOGY
Packaging data and metadata into a unified whole
Our solution to this data management problem is dtool. It is lightweight in that it has no
requirements for a (central) database. It simply consists of a command line tool and an
application programming interface (API) for packaging and interacting with data.

The most important aspect of dtool is that it packages data files with accompanying
metadata into a unified whole. The packaged data and metadata is referred to as a dataset.
Having the metadata associated with the data means that datasets can be moved around
and organised. It also means that the dataset contains all the information required to verify
the integrity of the data within it.

To illustrate the benefits of packaging data and associated metadata into a unified
whole, it is worth comparing it to other alternatives. A common solution is to store
metadata in file names and directory structures. For example consider a file named
col0_chitin_leaf_1.tif stored in a directory named repl_2. The file name contains
several pieces of metadata, namely that the image is of leaf sample 1 (leaf_1), of the
Colombia-0 ecotype of A. thaliana (col0), treated with chitin (chitin). Furthermore the
information that this is replicate 2 (repl_2) is encoded in the directory structure. This
makes it hard to move this data around without accidentally losing metadata, since this
metadata is implicitly encoded in the file path, rendering this approach fragile.

Another common approach is to store metadata in a database, this is the solution used
by systems such as iRODS and openBIS. A database is quite a heavyweight solution for
managing metadata. It has the disadvantage that one needs access to the database to be able
to work with the data, making it difficult to work off-site when the database is managed
centrally within an institute. It also makes it difficult to move data into other systems.
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Figure 1 Dataset structure.Dataset representation on file system. The user provides the data and the de-
scriptive metadata. The software generates the administrative and the structural metadata. Per item de-
scriptive metadata can be added to datasets as overlays. This is usually done by writing a script to annotate
the items in the dataset. The script create_paired_read_overlays_from_fname.py in the supplemen-
tary material is an example of such a script.

Full-size DOI: 10.7717/peerj.6562/fig-1

When dtool is used to create a dataset, it generates both administrative metadata and
structural metadata (Fig. 1). The administrative metadata contains information that helps
manage the dataset and includes, for example, an automatically generated universally
unique identifier (UUID). The structural metadata describes how the dataset is put
together, for example each data item in the dataset has associated information about its
size in a manifest, stored as part of the dataset.

When creating a dataset the user is asked to add descriptive metadata about the dataset
(Fig. 2). The user is, for example, prompted to describe the dataset, state the project
name and whether or not the dataset contains any confidential or personally identifiable
information.

Design decisions
The structure of the dataset was designed to be able to outlive the tool used to generate
it. In practise this means that metadata files are plain text and make use of standard file
formats such as JSON and YAML. It also means that there are files dedicated to describing
the structure of the dataset itself (.dtool/README.txt and .dtool/structure.json in
Fig. 1).

The structural metadata in the manifest (.dtool/manifest.json) was designed to be
able to verify the content of a dataset and abstract away file paths. It therefore stores the
size, checksum, and relative path of each item in the dataset. Below is the content of a
sample manifest.
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Figure 2 Dataset creation. The interactions between the end user, dtool and the underlying storage illus-
trated using a sequence diagram. In this example the dataset is given the name ds-name and it has one file
added to it hello.txt. The dataset structure is illustrated as it would appear in a file system. The end user
interaction with the dataset using dtool is the same for datasets stored in file system and datasets stored in
object storage even though their underlying representations in the storage systems may be different.

Full-size DOI: 10.7717/peerj.6562/fig-2
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{

"dtoolcore_version": "3.7.0",

"hash_function": "md5sum_hexdigest",

"items": {

"8bda245a8cd526673aab775f90206c8b67d196af": {

"hash": "78608288625e084d68b4b5e8c1725933",

"relpath": "ERR022075_2.fastq.gz",

"size_in_bytes": 1982742623,

"utc_timestamp": 1537805410.0

},

"9760280dc6313d3bb598fa03c5931a7f037d7ffc": {

"hash": "4766e60e72da987e4c54e47fee5653a4",

"relpath": "ERR022075_1.fastq.gz",

"size_in_bytes": 1875702420,

"utc_timestamp": 1537805358.0

}

}

}

dtool was designed to abstract away the underlying storage system. The structure of a
dataset on a file system is illustrated in Fig. 1. The representation in other storage systems,
such as object storage, can be different. However, the end user’s interactions with dtool
remain the same (Fig. 2), no matter what the underlying storage system is.

To ensure stability, the core code base (dtoolcore) has no dependencies outside of the
Python standard library. The core code base has a high test coverage (91%) to minimise
the chance of accidentally introducing bugs when developing new features. The high test
coverage is a result of insisting on tests for all core code that relate to the creation and
interaction with datasets. Tests were implemented using the pytest package and coverage
was measured using CodeCov.

The dtool storage backends and the command line interface make use of a pluggable
architecture, which makes it possible to write separate Python packages for creating custom
storage backends and adding new sub-commands to the dtool command line interface
without touching the existing code bases.

Language choice
The dtool API and command line tool were implemented in Python. Python was chosen
as it is open source, freely available and well established in the scientific community with
a rich ecosystem of scientific packages. It was also chosen because it is the language the
authors prefer to program in.

Source code and documentation
The dtool source code is freely available under the liberal MIT licence on GitHub. The
architecture of the code is pluggable with a core available at https://github.com/jic-
dtool/dtoolcore.
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The dtool documentation was created using Sphinx and is hosted using Read the Docs.
It is available at http://dtool.readthedocs.io/.

Example scripts in the Results section and the supplementary material are available at
https://github.com/jic-dtool/dtool_examples.

RESULTS
From an end user’s point of view there are several benefits to making use of dtool. First
and foremost it provides a means to make data understandable in the future.

This is achieved by providing a standardised way to annotate a dataset with descriptive
metadata.

dtool also enables researchers to:

• Back up raw data and archive old data.
• Safely move data from expensive to more cost effective storage solutions.

Both of the above are achieved by abstracting away file paths and storage technologies
from the end user. In other words interacting with a dataset stored in the cloud feels the
same as interacting with a dataset stored on local disk.

The abstraction of file paths and storage technologies also provides amore subtle benefit.
It enables end users to write processing scripts that are agnostic to the data location, making
processing scripts more portable and re-usable.

The ability to upload and download datasets to cloud storage solutions also provides the
benefit of enabling researchers to share datasets with collaborators.

Use case: making sense of data
One of the challenges in starting work in a new lab is coming to grips with old lab members’
data. The person who generated the data is often no longer around and substantial effort
can be spent trying to understand the context of the data and the way it has been structured.

dtool enables researchers to understand the context and content of a dataset by packaging
the metadata with the data. In other words one can quickly get from a URI specifying the
location of a dataset to an overview of the dataset. The URL below represents a dataset
hosted in Amazon S3 that can be accessed by anyone using dtool (the URL is not intended
to be displayed using a web browser).

http://bit.ly/Ecoli-reads

To find out the name of this dataset one can use the dtool name command.

$ dtool name http://bit.ly/Ecoli-reads

Escherichia-coli-reads-ERR022075

To find out the UUID of this dataset one can use the dtool uuid command.

$ dtool uuid http://bit.ly/Ecoli-reads

faa44606-cb86-4877-b9ea-643a3777e021
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In the examples above dtool pulls out the name/UUID of the dataset and prints it to the
terminal.

To get more information about this dataset one can use the dtool readme show

command.

$ dtool readme show http://bit.ly/Ecoli-reads

---

description: Whole Genome Sequencing of Escherichia coli str. K-12 MG1655

design: Paired-end sequencing (2x100 base) of E. coli library

sample: E. coli K-12 strain MG1655

study: |

Paired-end sequencing of the genome of Escherichia coli K-12

strain MG1655

using the Illumina Genome Analyzer IIx

Library:

Name: CT1093

Instrument: Illumina Genome Analyzer IIx

Strategy: WGS

Source: GENOMIC

Selection: RANDOM

Layout: PAIRED

Construction protocol: |

Standard Illumina paired-end library construction protocol.

Genomic DNA was

randomly fragmented using nebulisation and a ~600 bp fraction

(including adapters) was obtained by gel electrophoresis.

links:

- SRA: https://www.ncbi.nlm.nih.gov/sra/ERX008638

- ENA: https://www.ebi.ac.uk/ena/data/view/ERX008638

The command above pulls out the descriptive metadata from the dataset and prints it to
the terminal. In this case the descriptive metadata tells us, amongst other things, that this
dataset contains paired-end sequencing data for E. coli K-12 strain MG1655.

To see the size of the dataset one can use the dtool summary command.

$ dtool summary http://bit.ly/Ecoli-reads

name: Escherichia-coli-reads-ERR022075

uuid: faa44606-cb86-4877-b9ea-643a3777e021

creator_username: olssont

number_of_items: 2

size: 3.6GiB

frozen_at: 2018-09-26

This reveals that the dataset contains two items and is 3.6GiB in size. The items in the
dataset can be listed using the dtool ls command.
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$ dtool ls --verbose http://bit.ly/Ecoli-reads

8bda245a8cd526673aab775f90206c8b67d196af 1.8GiB ERR022075_2.fastq.gz

9760280dc6313d3bb598fa03c5931a7f037d7ffc 1.7GiB ERR022075_1.fastq.gz

In the above the -v/--verbose flag is used to return the size as well as the identifier
and the relative path of each item.

In summary the commands dtool readme show, dtool summary and dtool ls give
an overview of the context and content of a dataset.

Use case: backing up raw data and archiving old data
At the JIC we have several storage solutions, each one serving a specific purpose. Relatively
expensive file system storage is used for processing data. Object storage accessible via the
S3 API, with off-site backups is used for storing raw data. A capacious storage system
front-ended by iRODS is used for archiving long term intermediate data. Because dtool
abstracts away the underlying storage solution the end users can use the same commands
for copying data to and from these differing storage systems. The ease of moving data
around can be illustrated by copying a dataset hosted in the cloud to local disk.

$ dtool cp -q http://bit.ly/Ecoli-ref-genome .

file:///Users/olssont/Escherichia-coli-ref-genome

In the above the -q/--quiet flag is used to only return the URI specifying
the location that the dataset has been copied to, in this case a directory named
Escherichia-coli-ref-genome in the current working directory.

dtool can be used to copy a dataset between different storage solutions. This enables
researchers to copy data to storage solutions designed for backing up and archiving data.

Use case: generating inventories of datasets
One of the challenges of running a research group is keeping track of all the data being
generated. As such it is useful to be able to list datasets and to generate inventories of
datasets. This can be achieved using the commands dtool ls and dtool inventory.

The purpose of dtool ls is to provide a way to list names and URIs of datasets. Below
is an example of the dtool ls command listing three datasets stored in a directory named
my_datasets (see the supplementary material for details on how to setup this directory).

$ dtool ls my_datasets

Escherichia-coli-reads-ERR022075

file:///Users/olssont/my_datasets/Escherichia-coli-reads-ERR022075

Escherichia-coli-reads-ERR022075-minified

file:///Users/olssont/my_datasets/Escherichia-coli-reads-

ERR022075-minified

Escherichia-coli-ref-genome

file:///Users/olssont/my_datasets/Escherichia-coli-ref-genome

The need for this command becomes more apparent when working with datasets stored
in the cloud. The command below lists datasets in the Amazon S3 bucket dtool-demo.
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Note that the command below requires the user to have permissions to read the bucket and
as such will not work for the readers of the paper, but is included for illustrative purposes.

$ dtool ls s3://dtool-demo/

Escherichia-coli-ref-genome

s3://dtool-demo/8ecd8e05-558a-48e2-b563-0c9ea273e71e

Escherichia-coli-reads-ERR022075-minified

s3://dtool-demo/907e1b52-d649-476a-b0bc-643ef769a7d9

Escherichia-coli-reads-ERR022075

s3://dtool-demo/faa44606-cb86-4877-b9ea-643a3777e021

The dtool inventory command is intended to be able to generate reports of datasets.
The command below creates a report (my_datasets.html) listing all the datasets in the
my_datasets directory as a single HTML file that can be shared with colleagues.

$ dtool inventory --format=html my_datasets > my_datasets.html

In summary the dtool ls command can be used to find data in a base URI and
dtool inventory can be used to generate reports and web pages to make datasets
findable.

Use case: verifying the integrity of old data
It is useful for researchers to be able to reassure themselves that their research data is intact.

In order to be able to check whether or not this is the case, dtool provides a means
to verify the integrity of a dataset, using the dtool verify command. By default this
checks that the expected item identifiers are present in the dataset and that files have the
correct size. There is also a further option to check that the content of the files is correct
by comparing checksums, using the -f/--full option.

$ dtool verify Escherichia-coli-ref-genome

All good :)

The command above shows that the dataset contains the expected content. To illustrate
what happens if a dataset becomes corrupted we can move a file out of the dataset.

$ mv Escherichia-coli-ref-genome/data/U00096.3.fasta .

$ dtool verify Escherichia-coli-ref-genome

Missing item: b445ff5a1e468ab48628a00a944cac2e007fb9bc U00096.3.fasta

In summary dtool provides a means to get clarity with regards to the integrity of a
dataset. This is not, however, intented to detect deliberate tampering with the dataset, i.e.,
it would be possible to make the dtool verify command pass by deliberate modification
of the underlying files and the manifest.

Use case: processing data
dtool provides programmatic access to the data in a dataset. This means that one can use
dtool to create scripts that abstract away the location of the data.
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For example, to process all the items in a dataset one can use the dtool identifiers

command to list all the identifiers. To access the content of the items one can then use
the dtool item fetch command, which returns the absolute path to a location where
the item can be read. For datasets stored in the cloud, the dtool item fetch implicitly
includes a step to download the item to local disk to ensure it can be read from the absolute
path returned by the command.

Below is a Bash script (simple_processing.sh) to illustrate this. The script extracts
the first line from each dataset item, using gunzip and head.

#!/bin/bash

# Read in the input dataset URI from the command line.

INPUT_DS_URI=$1

# Process all the items in the input dataset.

for ITEM_ID in ‘dtool identifiers $INPUT_DS_URI‘; do

# Fetch an item and process it.

ITEM_ABSPATH=‘dtool item fetch $INPUT_DS_URI $ITEM_ID‘

gunzip -c $ITEM_ABSPATH | head -n 1

done

Running this simple_procssing.sh script on a dataset stored in the cloud is illustrated
below.

$ bash simple_processing.sh https://bit.ly/Ecoli-reads-minified

@ERR022075.1 EAS600_70:5:1:1158:949/2

@ERR022075.1 EAS600_70:5:1:1158:949/1

We can verify that this gives the same results as running the script on a dataset stored
on local disk by copying the dataset and re-running the script on the local dataset.

$ LOCAL_DS_URI=‘dtool cp -q https://bit.ly/Ecoli-reads-minified .‘

$ bash simple_processing.sh $LOCAL_DS_URI

@ERR022075.1 EAS600_70:5:1:1158:949/2

@ERR022075.1 EAS600_70:5:1:1158:949/1

It is also possible to use dtool to store the output of processing scripts, both in terms
of data and metadata. In other words, it is possible to implement scripts that implement
dataset to dataset processing. This can be used to automate aspects of data management.

The script below, called minfiy.sh, uses this concept of dataset to dataset processing.
It is worth noting that the script:

• Creates a name for the output dataset based on the input dataset name
• Creates an output dataset
• Processes all the items from the input dataset and adds the results to the output dataset
• Extracts the descriptive metadata from the input dataset as a base for the descriptive
metadata of the output dataset
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• Adds a reference to the input dataset and a description of how it was processed to the
descriptive metadata of the output dataset

#!/bin/bash

# Exit immediately on failure of a command.

set -e

# Read in the input from the command line.

INPUT_URI=$1

OUTPUT_BASE_URI=$2

NUM_LINES=4000

# Create a name for the output dataset based on the input dataset.

OUTPUT_NAME=‘dtool name $INPUT_URI‘-minified

# Create an open proto dataset.

OUTPUT_URI=‘dtool create -q $OUTPUT_NAME $OUTPUT_BASE_URI‘

# Process all the items in the input dataset and

# add the results to the output dataset.

for ITEM_ID in ‘dtool identifiers $INPUT_URI‘; do

# Fetch the item from the dataset and get an absolute path

# from where its content can be accessed.

ITEM_ABSPATH=‘dtool item fetch $INPUT_URI $ITEM_ID‘

# Write the minified version of the item to a temporary file.

TMP_MINIFIED=$(mktemp /tmp/minfied.XXXXXX)

gunzip -c $ITEM_ABSPATH | head -n $NUM_LINES | gzip > $TMP_MINIFIED

# Add the temporary file to the output dataset giving it the relpath

# of the item from the input dataset.

RELPATH=‘dtool item relpath $INPUT_URI $ITEM_ID‘

dtool add item $TMP_MINIFIED $OUTPUT_URI $RELPATH

# Cleanup.

rm $TMP_MINIFIED

done

# Create descriptive metadata for the output dataset.

TMP_README=$(mktemp /tmp/dtool-readme.XXXXXX)

dtool readme show $INPUT_URI > $TMP_README
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echo "minified:" >> $TMP_README

echo " from_UUID: ‘dtool uuid $INPUT_URI‘" >> $TMP_README

echo " from_URI: $INPUT_URI" >> $TMP_README

echo " content: first $NUM_LINES per item" >> $TMP_README

# Add the descriptive metadata to the output dataset.

dtool readme write $OUTPUT_URI $TMP_README

# Cleanup.

rm $TMP_README

# Finalise the output dataset.

dtool freeze $OUTPUT_URI

In Supplemental Information 1 there is a script that performs a Bowtie2 (Langmead &
Salzberg, 2012) alignment. It takes as input a dataset with paired RNA sequencing reads, a
dataset with a reference genome and a base URI specifying where the output dataset should
be written to. The command below shows the usage of this script.

$ bash bowtie2_align.sh \

http://bit.ly/Ecoli-reads-minified \

http://bit.ly/Ecoli-ref-genome .

Running this command creates a dataset in the current working directory. Below is a
command to create an environment variable as a simple alias to this directory.

$ DS_URI=Escherichia-coli-reads-ERR022075-minified-bowtie2-align

The content of this dataset is a SAM (Sequence Alignment Map) file.

$ dtool ls $DS_URI

3ffaeaf15fc1f12417aadddb9617fb048e39509e ERR022075.sam

The descriptive metadata gives information about how this SAM file was derived.

$ dtool readme show $DS_URI

---

description: bowtie2 alignment

input_reads_uri: http://bit.ly/Ecoli-reads-minified

ref_genome_uri: http://bit.ly/Ecoli-ref-genome

bowtie_version: bowtie2-align-s version 2.3.3

It is important to note that the metadata above was generated automatically by the
bowtie2_align.sh script.

In summary, dtool provides a means to write processing scripts that are agnostic to
where the input data is stored, whether it be on local disk or in some object storage system
in the cloud. Furthemore, using dtool to store the data generated from processing scripts
allow researchers to automate parts of their data management.
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Use case: sharing data
It is possible to share datasets hosted in cloud storage such as Amazon S3 and Microsoft
Azure storage.

Take for example the dataset represented by the URI below.

s3://dtool-demo/8ecd8e05-558a-48e2-b563-0c9ea273e71e

This is the dataset with the E. coli reference genome data.

$ dtool name s3://dtool-demo/8ecd8e05-558a-48e2-b563-0c9ea273e71e

Escherichia-coli-ref-genome

This URI can only be used by people that have been authorised to interact with the
dtool-demo Amazon S3 bucket. To make this dataset accessible to the public one can use
the dtool publish command.

$ dtool publish -q \

s3://dtool-demo/8ecd8e05-558a-48e2-b563-0c9ea273e71e

https://dtool-demo.s3.amazonaws.com/8ecd8e05-558a-48e2-b563-0c9ea273e71e

It is now possible for anyone in the world to interact with this dataset using the HTTPS
URI returned by the dtool publish command.

$ dtool name \

https://dtool-demo.s3.amazonaws.com/8ecd8e05-558a-48e2-b563-0c9ea273e71e

Escherichia-coli-ref-genome

To make life easier one can use a URL shortner like Bit.ly to create a more user friendly
URI. The example below refers to the same dataset as above.

dtool name http://bit.ly/Ecoli-ref-genome

Escherichia-coli-ref-genome

In summary dtool makes it possible to share datasets with collaborators and to make
datasets accessible to the research community.

Uptake at JIC
At the JIC we have introduced twelve research groups that deal with high volumes of data
(>10TB) to dtool. Of these, five groups have adopted dtool to manage their data, another
four are still evaluating it and three have found it difficult to move away from their existing
working practises.

Of the three groups that have found it difficult to move away from their exising working
practises the main barriers to uptake have included: (1) feeling overwhelmed with the
amount of exising data; (2) tight coupling of data analysis and input files, i.e., hard coded
paths in scripts; (3) use of directory structures to encode provenance of data analysis; (4)
absence of a data management champion within the group.

Four of the five groups that have adopted dtool found the incentive to do so in association
with a key member leaving the group. The other group that adopted dtool did so as part of
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starting a new project. In this instance we helped the group devise a protocol for packaging
raw sequencing data into datasets as it arrived from the sequencing company.

To date 26TB of data has been packaged into 803 datasets.

DISCUSSION
Data management provides a set of difficult problems. Technological developments
in scientific instruments, such as high throughput sequencers and super resolution
microscopes, have led to an explosion of data that must be stored, processed and shared.
This requires both recording of appropriate metadata and ensuring consistency of data.

These problems are compounded by the issue that those directly generating and
handling data, often junior researchers, have different immediate incentives from funders
and institutions. These front-line researchers need to be able to quickly receive and process
their data to generate scientific insights, without investing substantial time learning to use
complex data management systems.

However, maintenance and sharing of data is critical for the long term success of
science. Funding bodies therefore put requirements on grant holders to ensure that the
data generated by projects are shared and discoverable.

While there are good theoretical guidelines for data management, there is a lack of
tools to support them, particularly in the decentralised environment in which research
takes place.

Our attempts to solve these challenges led us to develop dtool. This tool provides a quick
and straightforward way to package a collection of related files together with key metadata,
which we term a dataset. This dataset provides both consistency checking and access to
both dataset and file level metadata, while being portable.

During the development of dtool we were not aware of the BagIt (Kunze et al., 2018)
file packaging format. Despite this, during its development, dtool evolved to share several
features with BagIt. In particular, dtool’s disk storage implementation also makes use of file
manifests containing checksums, descriptive metadata in plain text format, and a flexible
system for annotation with further metadata.

dtool differs, however, in that it is fundamentally an API that provides an abstract
interface to data and metadata, while BagIt is a specific way in which to store data on a
standard file system. dtool provides the ability to store data and metadata on different
storage systems (file system disk, iRODS, S3, and Azure at present, with a structure that
allows further extension). This is coupled with provision of a consistent interface for
working with this data that is independent of the storage medium. These different natures
give rise to different use cases—BagIt for ensuring safety of data in transit and at rest,
dtool to enable programmatic data management processes and use of different storage
technologies.

Beyond this difference in purpose (format versus abstraction tool), dtool provides
the ability to programmatically set and work with per-item metadata through its overlay
system. This could be achieved using BagIt’s tag system, by implementing a consistent
convention for storage of this metadata on top of BagIt.
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In future work we would like to experiment with creating a custom storage broker for
writing datasets to disk following the BagIt file packaging format. If successful, this could
pave the way to making it dtool’s default on disk packing format.

dtool datasets have been designed in accordance with the principles for storing digital
data outlined in Hart et al. (2016). dtool leaves original files intact and uses markup to add
additional metadata, adhering to the principle of keeping raw data raw. The markup used
by dtool is plain text files using standard formats such as YAML and JSON, in line with
the principle of storing data in open formats. Each dtool dataset is given a UUID and each
item in a dataset has a unique identifier, thus meeting the principle that data should be
uniquely identifiable.

dtool datasets are a good fit with many of the ideas regarding the life cycle of data
(Michener, 2015). The life cycle of data centres around the concepts of defining how data
will be organised, documented, stored and disseminated. Bymaking it easy tomove datasets
around, dtool provides a solution for the organisation, storage and dissemination of data.
By allowing the metadata to be packaged alongside the data, dtool also provides a solution
for documenting data.

dtool also provides a means for individual researchers and research groups to share their
data using cloud hosting solutions in a manner that makes the data adhere closely to the
FAIR principles (Wilkinson et al., 2016). While cloud hosting requires a consistent funding
stream, dtool provides the technical capabilities to facilitate Accessibility, Interoperability,
and Resusability. The core Python API provides programmatic access to metadata that can
be used to create tools for indexing and searching the datasets. Therefore it provides the
potential to make the data Findable.

dtool has provided substantial benefits for the research groups at JIC that have started
using it. Dataset consistency checking has given the researchers peace of mind that the key
data underpinning their scientific results are safe and secure. Requiring entry of appropriate
metadata when datasets are created has led to better organisation of data and the ability to
retrieve and understand data after capture and storage. The ability of the tool to easily move
datasets between the different storage systems to which they have access has substantially
reduced their storage costs, translating into increased capacity to store and process data
with the same resources.

However, there are hurdles to the uptake of dtool. Particularly when people feel
overwhelmed by the amount of data they have. We have found that for a research group
to start making use of dtool they need some external incentive. To date, the most common
one has been a key member leaving the group. The incentive for the groups that are still
evaluating dtool is to free up working space on expensive compute cluster associated
storage. The latter seems to have less weight than the former as no group has yet started
using dtool in order to do the latter.

Another hurdle to the uptake of dtool has been that it is a command line tool. This
means that some group leaders, who are less unfamiliar with the command line, have
some reservations about the tool. We are currently working on building graphical tools to
overcome this.
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We did not initially plan on deployment to systematically collect information on usage,
strengths and barriers to using dtool. As we continue to use and deploy dtool at JIC, we
will more systematically collect information and work with users to continue to improve
dtool.

dtool is now a key part of the JIC’s data management strategy. This means that members
of the core funded JIC Informatics team will maintain the tool and expand the software
eco-system surrounding it.

CONCLUSION
Without data management, reproducible science is impossible. Our rapidly expanding
ability to collect and process data has the potential to generate important insights. However,
this is only possible if the data is accessible and the person doing the analysis has enough
knowledge about the observations in the data to put them into the context of a research
question. Making data accessible and understandable becomes increasingly complex as the
volumes of data grow.

In particular, there are substantial challenges in: capturing and storingmetadata together
with data; ensuring consistency of data that is comprised of multiple individual files;
and being able to use heterogeneous storage systems with different capabilities and
access methods. These challenges become even more difficult to overcome in the highly
decentralised environment in which much scientific research takes place.

dtool helps researchers overcome these challenges by providing a lightweight and
flexible way to package individual files and metadata into a unified whole, which we term a
dataset. This dataset provides consistency checking, giving reseachers confidence that their
data maintains integrity while moving it between storage systems. Storing key file- and
dataset-level metadata together with the data allows the data to be understood in future.
The ability to use different storage backends such as file system, iRODS, S3 or Azure storage
allows data to be moved to the most appropriate location to balance cost and accessibility.

dtool datasets are ideally suited for processing because one can access both the data
and the metadata programatically. Further, it is possible to create new datasets for storing
the output of processing pipelines programatically using both the command line tool
and the Python API. This provides a means to automate aspects of data management by
incorporating it into processing pipelines.

Our tool is available as free open source software under the MIT license. We hope that
it will provide benefit to others.
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