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ABSTRACT
There has been steady improvement in methods for capturing bioimages. However

analysing these images still remains a challenge. The Python programming language

provides a powerful and flexible environment for scientific computation. It has a

wide range of supporting libraries for image processing but lacks native support for

common bioimage formats, and requires specific code to be written to ensure that

suitable audit trails are generated and analyses are reproducible. Here we describe

the development of a Python tool that: (1) allows users to quickly view and explore

microscopy data; (2) generate reproducible analyses, encoding a complete history of

image transformations from raw data to final result; and (3) scale up analyses from

initial exploration to high throughput processing pipelines, with a minimal amount

of extra effort. The tool, jicbioimage, is open source and freely available online at

http://jicbioimage.readthedocs.io.

Subjects Bioinformatics, Cell Biology, Computational Biology, Human-Computer Interaction,

Computational Science

Keywords Image processing, Rapid iteration, Automation, Provenance, Reproducibility, Bioimage

analysis, Audit trail

INTRODUCTION
Over the years microscopy has benefited from many technological advancements.

There is now a wide range of differing types of microscopy including bright-field,

differential-interface-contrast (DIC), confocal, scanning electron (SEM) and

transmission electron (TEM).

Although there has been impressive improvement in the development of better means

of capturing bioimages, the analysis of bioimages still remains a challenge (Eliceiri et al.,

2012). It is common for researchers to extract qualitative information from an image by

simply looking at it. However, this can result in unconscious bias and is often error prone.

In particular, our brains have been conditioned to infer patterns (Witkin & Tenenbaum,

1983) and our eyes are ill suited to distinguish colour intensities (Gouras & Zrenner, 1981),

both traits make us bad at quantitative analysis.

For more advanced image analysis, researchers most commonly make use of

ImageJ/Fiji (Schindelin et al., 2012; Schneider, Rasband & Eliceiri, 2012), simply referred

to as Fiji from now on. Fiji has an advantage over generic image analysis software in

that it can work directly with images from most microscopy instruments. This is

achieved by making use of the Open Microscopy Environment’s Bio-Formats API

(Linkert et al., 2010). This, along with a relatively easy to use graphical interface and a
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vibrant user community (Schindelin et al., 2015), has made Fiji the standard tool in

bioimage analysis.

Beyond Fiji, a wide range of tools, libraries and frameworks exist to solve various

aspects of the image analysis problem. These include: (1) tools designed to solve very

specific analysis problems, such as quantifying plant phenotypes (Pound et al., 2013;

Fahlgren et al., 2015); (2) tools specifically designed for (bio)image analysis (Möller et al.,

2016) Imaris (www.bitplane.com/imaris/imaris) (Marée et al., 2016); (3) analysis

pipelining tools, some dedicated specifically to bioimage analysis (Carpenter et al., 2006;

Kvilekval et al., 2010) Icy (http://icy.bioimageanalysis.org/) and some with more general

application but specific adaptations to bioimaging problem domains (Berthold et al.,

2007); (4) general purpose mathematical or statistical analysis tools with packages

designed for image analysis (R Development Core Team, 2016), MATLAB (Version 7.10.0;

The MathWorks Inc., Natick, MA), Mathematica (Wolfram Research, Inc., 2016), Python;

(5) software libraries or frameworks providing image analysis methods and transforms

(Lowekamp et al., 2013; van der Walt et al., 2014; Bradski, 2000). Some of the tools and

libraries can be integrated with interactive data exploration tools that aid reproducibility

such as Jupyter Notebook (NumFOCUS Foundation, http://jupyter.org), Beaker

Notebook (Two Sigma Open Source, http://beakernotebook.com) and Vistrails (https://

www.vistrails.org/).

MOTIVATION
In our work, providing bioimage analysis support to various biology labs, we found that

we needed a tool that added functionality to basic Python scripting to:

1. Quickly explore data and test a range of analysis methods step-by-step.

2. Provide easy access to existing powerful image analysis frameworks (such as ITK,

scikit-image and OpenCV).

3. Automatically add tracking of image manipulations to enable both auditability and

reproducibility.

4. Take small scale (single image or part of image) analyses developed and tested on a

desktop/laptop, and transfer them to run on large datasets on a compute cluster or

powerful dedicated workstation.

These goals were driven by a desire to be able to quickly explore bioimage data in a

reproducible fashion and to be able to easily convert the exploratory work into software

for experimental biologists. Reproducibility is key pillar of scientific research and an

aspect that is becoming more and more scrutinised as funding bodies strive towards a

more open approach.

The available tools all provided some part of this functionality, but non provided all of it,

and many of the more complex frameworks required substantial supporting infrastructure

to install and run. We needed a lightweight tool, that would enable us to make use of the

power of image analysis libraries with Python bindings and Bio-Formats’ data conversion

capabilities, but without adding substantial installation or maintenance overhead.
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We therefore developed a Python tool that enables those with bioimage data to:

(1) quickly view and explore their data; (2) generate reproducible analyses, encoding a

complete history of image transformations from raw data to final result; and (3) scale up

analyses from initial exploration to high throughput processing pipelines, with a

minimal amount of extra effort. Here we present our efforts to produce this tool, a Python

package named jicbioimage.

METHODS
Language choice
The jicbioimage framework was implemented in Python. Python allows rapid

exploration of data and has a rich ecosystem of scientific packages, including several

aimed at image analysis; for example scikit-image (van der Walt et al., 2014), Mahotas

(Coelho, 2013), OpenCV (Bradski, 2000), and SimpleITK (Lowekamp et al., 2013).

Building on the works of others
Rather than reimplementing existing functionality from scratch, we decided that the

framework should form a layer on top of the works of others, see Fig. 1.

Firstly we decided to leverage the Bio-Formats tools for parsing and interpreting

bioimage files (Linkert et al., 2010). Secondly, we decided that the framework should not

directly implement image analysis algorithms. Rather, it should be able to make use of the

work done by others in this field. By allowing users of the framework to use the wide range

of existing implementations of image analysis algorithms, such as edge detection or

thresholding, the framework becomes powerful and flexible.

Loading bioimage data
Our first goal (allowing rapid exploration of bioimage data) was addressed by providing

functionality for loading and manipulating bioimage files. A bioimage file can contain

more than one 2D image, often described as 3D, 4D or even 5D data. The framework

therefore provides the concept of a microscopy image collection, which contains all the

2D images from the bioimage file. The microscopy image collection can provide

information about the number of series, channels, z-stacks and time points in the

collection as well as methods for accessing individual images and z-stacks.

This functionality was implemented as a thin wrapper around Bio-Formats’ bfconvert

tool. The bfconvert tool can convert many kinds of bioimage file into a set of

appropriately named TIFF files. The converted TIFF files are cached in a backend directory.

This means that the conversion only needs to happen once, which helps shorten the

iteration cycle during the development of new analysis workflows. However, this detail is

hidden from the end user who simply needs to write three lines of code to load a bioimage.

from jicbioimage.core.io import DataManager

data_manager = DataManager()

microscopy_collection = data_manager.load("hypocotyl.czi")
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The hypocotyl.czi file (Olsson & Calder, 2016) is a 3D image (contains a number of

z-slices) and has information in two color channels. This particular microscopy image is

of the hypocotyl of Arabidopsis thaliana. The first channel (0) contains the intensity

originating from a nuclear marker and the second channel (1) contains intensity

originating from a cell wall marker, see Fig. 2A.

Methods for providing access to specific 2D images as well as z-stacks are provided by

the microscopy collection.

image = microscopy_collection.image(s=0, c=1, z=31, t=0)

zstack = microscopy_collection.zstack(s=0, c=1, t=0)

Reproducible data analysis
Tohelp researchers easily understand how their data are transformedduring each step of the

data analysis workflow, the framework contains a transformation function decorator.

This function decorator can be applied to any function that takes an image as input and

returns an image as output. When decorating such a function, two pieces of functionality

are added to it: (1) the ability to append information about the function itself to the

history of the returned image object; and (2) the ability to write the result of the

transformation to disk, as a PNG file, with a descriptive name.

Figure 1 The jicbioimage Python package is a thin wrapper on top of Bio-Formats, numpy, scipy

and scikit-image. It embeds an audit trail for image processing and makes it easy to work with multi-

dimensional bioimages.

Figure 2 Section of hypocotyl bioimage. (A) Cell wall marker signal from channel 1, z-slice 31.

(B) Binary image automatically written to disk by the threshold_abs() function. Pixels from the

input image with an intensity greater than 50 have been set to True (white), all other pixels have been set

to False (black).
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Below we illustrate the use of the transformation function decorator by implementing

a basic threshold transformation and applying it to the image loaded earlier.

from jicbioimage.core.transform import transformation

@transformation

def threshold_abs(image, cutoff):

"""Return thresholded image."""

return image > cutoff

image = threshold_abs(image, 50)

# Print out the record of how the image was created.

print(image.history.creation)

# Print out each transformation the image has experienced.

for event in image.history:

print(event)

When we apply the threshold_abs() transformation, information about this event is

appended to the history of the image. Furthermore, the image resulting from the

transformation is written to a file named 1_threshold_abs.png in the working

directory, see Fig. 2B.

The history of an image provides a record of how the image was originally created. In

this case the image was created by reading in a file representing the 2D image of channel 1,

z-slice 31, see the first line in the output below.

Created Image from /Users/olssont/projects/jicimagelib_paper/

scripts/jicbioimage.core_backend/

a861541517171ae877f08f6dc97bd072/S0_C1_Z31_T0.tif

<History.Event(threshold_abs(image, 50))>

The events stored in the history of an image provides an audit log of the

transformations that the image has experienced, note the threshold_abs(image, 50)

event in the script’s output above.

Without the additional functionality provided by our transform decorator, we would

need to include explicit code to save the image and record the history, for example:

# Import modules needed to create file paths and save images.

import os.path

import skimage.io
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# Define thresholding function that saves the resulting image

# and logs the event.

def threshold_and_log(image, cutoff, output_filename, history):

history.append("threshold_and_log(image,{})".format(cutoff))

thresholded_image = image > cutoff

skimage.io.imsave(output_filename, thresholded_image)

return thresholded_image, history

# Setup variables to pass to the thresholding function.

history = []

output_filename = "thresholded_image.png"

output_path = "/output"

full_output_filename = os.path.join(output_path, output_filename)

# Call the thresholding function using the image of interest.

image, history = threshold_and_log(image, 50,

full_output_filename, history)

Not only would we need to recreate this code for each step of the image analysis, but we

would need to carefully ensure that data paths existed, filenames were consistently

constructed and meaningful, and that images were saved in an appropriate format. We

would also need to ensure that we recorded that this processing step had taken place and at

what stage of processing it had occurred. With the transform decorator, all of these things

happen automatically and consistently.

Because the transformation function decorator can be applied to any function that

has a numpy array as input and output, it is easy to wrap image transforms from other

Python libraries. In fact most of the transforms in the jicbioimage.transform package

are thin wrappers around functions from the scikit-image (van der Walt et al., 2014)

library.

The numpy array encodes multidimensional numerical data as a block of memory

(van der Walt, Colbert & Varoquaux, 2011) together with information about the size and

shape of that data. Within the Python programming community, it is a widely used

standard designed specifically for scientific computation.

The jicbioimage framework has an Image class that is an extension of this numpy

array. One extension is the history property described earlier. Another extension is the

addition of a png()method, which returns a PNG byte string of the image. This method is

used by the transformation function decorator to write the transformed image to disk.

The fact that the Image class is simply a numpy array makes it easy to work with other

scientific Python libraries. In particular libraries such as numpy (van der Walt, Colbert &

Varoquaux, 2011), scipy (Jones, Oliphant & Peterson, 2016; Oliphant, 2007; Millman &

Aivazis, 2011), scikit-image (van der Walt et al., 2014), OpenCV (Bradski, 2000),

simpleITK (Lowekamp et al., 2013), and Mohotas (Coelho, 2013) that all provide useful

algorithms for image analysis.
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Tools for working with segmentations and
making annotations
The development of jicbioimage has been driven by our need to provide image

analysis support across the John Innes Center (www.jic.ac.uk). As such, features have

only been added after we have found a repeated use for them. Having added support

for working with bioimage data and transformations we found that we continually

had to implement custom code for working with segmentations. We therefore

implemented a SegmentedImage class and a Region class. The SegmentedImage

class inherits from the base Image class, but provides its own png() function that

represents the segmentation as a false colour image. In a SegmentedImage a segment

is represented by pixels that have the same positive integer. The integer zero is

reserved for representing background and all other positive integers represent potential

identifiers for segments. The SegmentedImage class then provides methods for accessing

the set of unique segment identifiers and for accessing the segments as regions by their

identifiers.

The Region class extends a boolean numpy array representing the mask of the region

of interest. It has functionality for accessing a number of useful properties of the region

that can be calculated on the fly, for example the area and the perimeter. Some of the

properties that can be accessed from a region are themselves instances of the Region class,

examples include the border and the convex hull.

We found that in communicating with experimental biologists it was useful to be able

to create annotated images. We therefore implemented an AnnotatedImage class with

convenience functions for loading a gray-scale background image, masking out regions of

interest, drawing crosses and writing text.

Technical considerations
In order to facilitate rapid exploration of data and ideas the framework has built-in

integration with IPython (Perez & Granger, 2007). Our Image class (the base 2D unit

of processing) provides the methods needed by IPython to enable it to be directly viewable

in a IPython/Jupyter notebook (particularly the _repr_png_() method). This enables

those analysing their image data to see the output of each stage of data analysis and

exploration, allowing the framework to act as part of an interactive, reproducible

workflow.

The desire to be able to convert exploratory work into tools that can be distributed to

experimental biologists was largely satisfied by implementing the framework in Python.

Python has extensive support for creating command line tools, graphical user interfaces

and web applications.

To aid in reproducibility the framework is under Git version control hosted on GitHub

(github.com) and stable releases are available through PyPi (pypi.python.org). This allows

scripts developed with the tool to be easily shared and published.

The framework has been designed to be modular. At the top level jicbioimage is a

name space package into which other sub-packages can be installed. This allows the
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dependencies of the sub-packages to be independent of each other. The framework

currently has four sub-packages:

� jicbioimage.core

� jicbioimage.transform

� jicbioimage.segment

� jicbioimage.illustrate

The framework has been developed using a test-driven approach and has full test

coverage. Although this does not mean that the framework is bug free, it gives some level of

confidence that existing functionality will not be broken as the framework is developed. The

tests are run on Linux and Windows each time the code is pushed to GitHub using the

Travis CI (travis-ci.org) and AppVeyor (www.appveyor.com) continuous integration

services.

The framework has both high level descriptive as well as API documentation. The

documentation is built each time changes are pushed to GitHub using Readthedocs’

hosting services Read the Docs (https://readthedocs.org/).

The framework is supported on Linux, Mac and Windows and works with Python 2.7,

3.4, and 3.5. The framework depends on bftools and freeimage (The FreeImage

Project, http://freeimage.sourceforge.net/) as well as the numpy, scipy and scikit-

image Python packages.

The code described in this paper was run using:

jicbioimage.core==0.13.1

jicbioimage.transform==0.5.1

jicbioimage.segment==0.4.0

jicbioimage.illustrate==0.6.0

numpy==1.10.4

scipy==0.17.0

skimage==0.11.3

Detailed installation notes can be found in the online documentation, jicbioimage.

readthedocs.io.

RESULTS
Usage example
Below is an extended example illustrating some of the aspects of the framework described

here. The code segments an image into cells to show the functionality available in the

jicbioimage Python package.

Segmenting images into cells is a very common problem in bioimage analysis as it

enables understanding of cell level properties such as volume and shape. Segmentation is

also a requirement if one wishes to locate other features of interest within cells.
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First the microscopy data is loaded and the 2D image representing channel 1, z-slice 31

is retrieved.

from jicbioimage.core.io import DataManager

data_manager = DataManager()

microscopy_collection = data_manager.load("hypocotyl.czi")

cellwall = microscopy_collection.image(c=1, z=31)

The segmentation protocol will make use of the absolute thresholding transform

discussed earlier.

from jicbioimage.core.transform import transformation

@transformation

def threshold_abs(image, cutoff):

"""Return thresholded image."""

return image > cutoff

The segmentation protocol will also make use of a number of transformations built

into the jicbioimage.transform package. It will also make use of two functions from

the jicbioimage.segment package. Below is the code for importing these functions.

from jicbioimage.transform import (

dilate_binary,

remove_small_objects,

invert,

)

from jicbioimage.segment import (

connected_components,

watershed_with_seeds,

)

The code below makes use of the threshold_abs() and the imported functions to

segment the image.

# Find seeds for the watershed algorithm.

seeds = threshold_abs(cellwall, cutoff=50)

seeds = dilate_binary(seeds)

seeds = invert(seeds)
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seeds = remove_small_objects(seeds, min_size=500)

seeds = connected_components(seeds, background=0)

# Segment the image into cells.

segmentation = watershed_with_seeds(-cellwall, seeds=seeds)

Because all of the functions imported from the jicbioimage.transform and

jicbioimage.segment packages have been decorated with the transformation

decorator they automatically write out the resulting images to the working directory,

see Fig. 3.

The top and bottom segments correspond to regions that are outside of the hypocotyl

tissue. As such we would like to remove them. Here we accomplish this using a simple area

filter.

# Remove regions from the segmentation that are

# too large to be cells.

for i in segmentation.identifiers:

region = segmentation.region_by_identifier(i)

Figure 3 Images generated automatically by the segmentation code example. The filenames, which

are also generated automatically, give information about the order in which the images were produced

and the specific transformation that was used to produce an image. The fourth transformation removes

small white dots in the cell walls.
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if region.area > 40000:

segmentation.remove_region(i)

Finally, an augmented image is produced to show the result of the segmentation

and the number of pixels of each segmented cell. The code below makes use of the

pretty_color_from_identifier() function that produces false colour images

in a deterministic fashion.

from jicbioimage.illustrate import AnnotatedImage

from jicbioimage.core.util.color import pretty_color_from_identifier

annotation = AnnotatedImage.from_grayscale(cellwall)

for i in segmentation.identifiers:

region = segmentation.region_by_identifier(i)

outline = region.inner.border.dilate()

area_str = str(region.area)

color = pretty_color_from_identifier(i)

annotation.mask_region(outline, color)

annotation.text_at(area_str, region.centroid, center=True)

with open("annotation.png", "wb") as fh:

fh.write(annotation.png())

The png() method on the image class returns a PNG encoded byte string. One can

therefore easily create a PNG file by writing this byte string to a file opened in binary

mode. In this case we use it to write out the annotated image, shown in Fig. 4.

In summary this extended example shows that using relatively few lines of code it is

possible to:

� load a bioimage and access a particular z-slice from it

� segment the image into cells; automatically creating a visual audit trail

� work with the segmentation to remove large regions that do not represent cells

� create an augmented image displaying the raw data, the segmentation and the size of

each cell

DISCUSSION
Software development inevitably involves a trade-off between implementing functionality

directly and including dependent code through libraries or packages. The Python-

bioformats (http://pythonhosted.org/python-bioformats/) package exists to provide an

interface to OME Bioformats, using the Python Java bridge. We chose not to depend on

this package as part of our bioformats integration since managing the Java bridge

complicates installation and adds additional code maintenance overhead.
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However, as the jicbioimage code is relatively modular, it is possible to create

another backend. An alternative backend that used the Python-bioformats (http://

pythonhosted.org/python-bioformats/) package could therefore be created and added to

the DataManager. One of the reasons for the code having this modular structure was to be

able to add backends when encountering new formats not supported by Bio-Formats.

To date we have had to do this once when working with bioimages generated from

micro-CT (Computed Tomography) experiments.

We have used our tool to analyse images at a wide range of scales, from the microscopy

data presented in this paper (at micrometer scale), though images of whole plant organs

(at centimeter scale) to analysis of drone imaging data of whole fields (a scale of multiple

meters). This range of scales also cover images captured from varied devices, including

different microscopy imagers (confocal microscopes, DIC, SEM/TEM), multispectral

cameras, micro-CT capture and drone-mounted cameras. In each case, the support

provided by our framework in providing access to image analysis libraries, auditing

Figure 4 Annotated image generated by the segmentation code example. The gray scale intensity

represents the cell wall marker signal. Segmented cells are outlined using a deterministic false colouring

scheme. The number inside each cell represents the segmented cell area in pixels.
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and recording image transform history and allowing rapid scaling has been extremely

beneficial.

We have used our tool to analyse individual images as well as large collections of

bioimages. One recent study required us to analyse over 400 3D images of roots stored

in 14 bioimage files ranging in size from 0.5 to 2 GB. In this instance, we prototyped

code for segmenting the root into cells and extracting information on a per cell basis

on two individual roots. To scale up the analysis we then wrote a script that used the

DataManager to unpack all the bioimage files and write out a “job list.” Using the job list,

it was then trivial to parallelize the image analysis.

Future work
Although we are very happy with our tool, there are still areas where the tool could be

improved. These are discussed below.

Use of numpy arrays as a primary data format results in limitations on the scale at

which individual datasets can be processed. For example, we have used our tool to

analyse micro-CT data. Files produced by the imager can be up to 50 GB in size, at which

point the three dimensional structure of the data is too large to fit in memory in a single

numpy array. As jicbioimage does not load entire zstacks into memory unless

specifically asked for, we can work with these large bioimages. However, extending the

functionality of our framework to include functionality similar to ImageJ’s “virtual

stacks” (whereby only part of the whole image resides in memory) would make this

process smoother.

At the moment the histories of images are not automatically saved to disk when a

script is run. However, since a “history” is essentially a list of strings it is trivial to add a

step to save it. We are currently experimenting with ways in which this could be

automated. One option is to make use of Python’s built in logging module and add

logging of the history to the transformation function decorator. In an ideal world the

history would also be stored within the image files saved to disk. This would in theory be

possible using the TIFF file format.

At the moment there is no automatic extraction of meta data from bioimages.

Although the meta data is always available from the original file it is in many instances

useful to have direct access to it from within the data analysis script. In the future, we plan

to add functionality to allow this.

CONCLUSION
The work described in this paper arose out of necessity. As computational scientists

supporting a large number of biology groups we needed a tool that would: (1) allow us to

quickly view and explore bioimage data; (2) generate reproducible analyses, encoding a

complete history of image transformations from raw data to final result; and (3) scale up

analyses from initial exploration to high throughput processing pipelines, with a minimal

amount of extra effort.

The jicbioimage Python package provides all these features as a set of loosely coupled

submodules. These allow the user to read in bioimage data, transform and segment
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the data whilst having the history recorded both in the image objects and as a series

of image files written to disk. Furthermore, the package includes lightweight functionality

for creating annotated images to aid in the creation of more informative images.

To date we have used the tool, and its nascent precursors, on over fifteen internal

projects at various stages of the publication pipeline (Berry et al., 2015;Duncan et al., 2016;

Rosa, Duncan & Dean, 2016). As the package has matured, we have found substantial gains

in our productivity. Each feature has resulted in a substantial reduction in the

development time for subsequent bioimage analysis projects. We feel that we now have

functionality to address most of the bottlenecks in our work. As such we consider the

package stable. Furthermore, we consider the package to be a time saving tool that

provides provenance and is easy to use.

It is our hope that the tool will be useful to both experimental and computational

biologists. The framework developed here is ideally suited to any researcher who desires

automation and reproducibility in their bioimage analysis.
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