13 research outputs found

    A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators

    Get PDF
    A summary is provided of recent advances in the natural science evidence base concerning the effects of neonicotinoid insecticides on insect pollinators in a format (a ‘restatement’) intended to be accessible to informed but not expert policymakers and stakeholders. Important new studies have been published since our recent review of this field (Godfray et al. 2014 Proc. R. Soc. B 281,20140558. (doi:10.1098/rspb.2014.0558)) and the subject continues to be an area of very active research and high policy relevance

    Virus Prevalence in Egg Samples Collected from Naturally Selected and Traditionally Managed Honey Bee Colonies across Europe

    Get PDF
    Monitoring virus infections can be an important selection tool in honey bee breeding. A recent study pointed towards an association between the virus-free status of eggs and an increased virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both naturally surviving and traditionally managed colonies from across Europe were screened for the prevalence of different viruses. Screenings were performed using the phenotyping protocol of the 'suppressed in ovo virus infection' trait but with qPCR instead of end-point PCR and a primer set that covers all DWV genotypes. Of the 213 screened samples, 109 were infected with DWV, 54 were infected with black queen cell virus (BQCV), 3 were infected with the sacbrood virus, and 2 were infected with the acute bee paralyses virus. It was demonstrated that incidences of the vertical transmission of DWV were more frequent in naturally surviving than in traditionally managed colonies, although the virus loads in the eggs remained the same. When comparing virus infections with queen age, older queens showed significantly lower infection loads of DWV in both traditionally managed and naturally surviving colonies, as well as reduced DWV infection frequencies in traditionally managed colonies. We determined that the detection frequencies of DWV and BQCV in honey bee eggs were lower in samples obtained in the spring than in those collected in the summer, indicating that vertical transmission may be lower in spring. Together, these patterns in vertical transmission show that honey bee queens have the potential to reduce the degree of vertical transmission over time

    COLOSS survey : global impact of COVID-19 on bee research

    Get PDF
    The socio-economic impacts of COVID-19 on society have yet to be truly revealed; there is no doubt that the pandemic has severely affected the daily lives of most of humanity. It is to be expected that the research activities of scientists could be impacted to varying degrees, but no data exist on how COVID-19 has affected research specifically. Here, we show that the still ongoing COVID-19 pandemic has already diversely and negatively affected bee research at a global level. An online survey disseminated through the global COLOSS honey bee research association showed that every participant (n¼230 from 56 countries) reported an impact on one or more of their activities. Activities that require travelling or the physical presence of people (meetings and conferences, teaching and extension) were affected the most, but also laboratory and field activities, daily operations, supervision and other activities were affected to varying degrees. Since the basic activities are very similar for many research fields, it appears as if our findings for bee research can be extrapolated to other fields. In the light of our data, we recommend that stakeholders such as governments and funding bodies who support research should facilitate the wide implementation of web-based information technology required for efficient online communication for research and education, as well as adequately loosened restriction measures with respect to field and laboratory work. Finally, increased flexibility in administration and extension of research grants and fellowships seem to be needed. It is apparent that adequate responses by all stakeholders are required to limit the impact of COVID-19 and future pandemics on bee science and other research fields.The Ricola Foundation Nature and Culture and Vetopharma.http://www.tandfonline.com/loi/tjar20am2020Zoology and Entomolog

    Physiology and ecology of ammonium and nitrate nutrition in plantago and alnus

    No full text
    In dit proefschrift staat de ecologische betekenis van de stikstofvoeding van hogere planten centraal. Daarbij wordt zowel aandacht geschonken aan het effect van de hoeveefheid stikstof, als aan de vorm waarin de stikstof wordt aangeboden: ammonium of nitraat. Voor de experimenten werd gebruik gemaakt van planten gekweekt in klimaatkamers, in kassen en op de proeftuin. Bovendien werden planten in het veld bestudeerd. ... Zie: Samenvatting

    The diversity decline in wild and managed honey bee populations urges for an integrated conservation approach

    Get PDF
    Many parts of the globe experience severe losses and fragmentation of habitats, affecting the self-sustainability of pollinator populations. A number of bee species coexist as wild and managed populations. Using honey bees as an example, we argue that several management practices in beekeeping threaten genetic diversity in both wild and managed populations, and drive population decline. Large-scale movement of hive stocks, introductions into new areas, breeding programs and trading of queens contribute to reducing genetic diversity, as recent research demonstrated for wild and managed honey bees within a few decades. Examples of the effects of domestication in other organisms show losses of both genetic diversity and fitness functions. Cases of natural selection and feralization resulted in maintenance of a higher genetic diversity, including in a Varroa destructor surviving population of honey bees. To protect the genetic diversity of honey bee populations, exchange between regions should be avoided. The proposed solution to selectively breed all local subspecies for a use in beekeeping would reduce the genetic diversity of each, and not address the value of the genetic diversity present in hybridized populations. The protection of Apis mellifera’s, Apis cerana’s and Apis koschevnikovi’s genetic diversities could be based on natural selection. In beekeeping, it implies to not selectively breed but to leave the choice of the next generation of queens to the colonies, as in nature. Wild populations surrounded by beekeeping activity could be preserved by allowing Darwinian beekeeping in a buffer zone between the wild and regular beekeeping area.Biointeractions and Plant Health (part of Wageningen University and Research) internal fund, the French Biodiversity Agency, the Ricola foundation, the Chiang Mai University fund and the National Research Foundation of South Africa.http://frontiersin.org/Ecology_and_Evolutiondm2022Zoology and Entomolog

    Adapted tolerance to virus infections in four geographically distinct Varroa destructor-resistant honeybee populations

    Get PDF
    The ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes. Several honeybee populations across Europe have well-documented adaptations of mite-resistant traits but little is known about host adaptations towards the virus infections vectored by the mite. The aim of this study was to assess and compare the possible contribution of adapted virus tolerance and/or resistance to the enhanced survival of four well-documented mite-resistant honeybee populations from Norway, Sweden, The Netherlands and France, in relation to unselected mite-susceptible honeybees. Caged adult bees and laboratory reared larvae, from colonies of these four populations, were inoculated with DWV and ABPV in a series of feeding infection experiments, while control groups received virus-free food. Virus infections were monitored using RT-qPCR assays in individuals sampled over a time course. In both adults and larvae the DWV and ABPV infection dynamics were nearly identical in all groups, but all mite-resistant honeybee populations had significantly higher survival rates compared to the mite-susceptible honeybees. These results suggest that adapted virus tolerance is an important component of survival mechanisms
    corecore