485 research outputs found

    The Non-Exhaust Particulate Emissions Impact of EURO VI to Battery Electric Bus Fleet Transitions

    Get PDF
    There is already strong evidence that non-exhaust emissions (NEEs) are a significant source of transport-related particulates, and an expectation that this will increase as we transition from 13 conventional to heavier alternative technology vehicles. (1) Therefore, we need to ensure that our existing commitment to zero (at tailpipe) emissions is complemented by an active effort to mitigate any unintended consequences for NEEs. (2) This work, led by FirstBus, and funded by the TRANSITION Clean Air Network funded by the Natural Environment Research Council within the UKRI Clean Air Programme (3), uses the EURO VI-to-Battery Electric Bus transition as a case study to explore options to: (a) improve inventorying information available to fleet managers considering fleet upgrade options; and, (b) gather evidence on the potential divergence between regulatory metrics, conventional emission factors, inventory model predictions and the real-world outcomes as we migrate to what need to be significantly cleaner technologies

    High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Volcanology and Geothermal Research 314 (2016): 142-155, doi:10.1016/j.jvolgeores.2015.07.037.Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation–reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial “Steaming Cliffs,” boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.Funding was provided by GNS Strategic Development Fund

    Heat flow and near-seafloor magnetic anomalies highlight hydrothermal circulation at Brothers volcano caldera, southern Kermadec arc, New Zealand

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(14), (2019): 8252-8260, doi: 10.1029/2019GL083517.Brothers volcano is the most hydrothermally active volcano along the Kermadec arc, with distinct hydrothermal fields located on the caldera walls and on the postcollapse volcanic cones. These sites display very different styles of hydrothermal activity in terms of temperature, gas content, fluid chemistry, and associated mineralization. Here we show the results of a systematic heat flow survey integrated with near‐seafloor magnetic data acquired using remotely operated vehicles and autonomous underwater vehicles. Large‐scale circulation is structurally controlled, with a deep (~1‐ to 2‐km depth) central recharge through the caldera floor and lateral discharge along the caldera walls and at the summits of the postcollapse cones. Shallow (~ 0.1‐0.2 km depth) circulation is characterized by small‐scale recharge zones located at a distance of ~ 0.1–0.2 km from the active vent sites.We thank the Captains and crews of the R/V Sonne, Thompson, and Tangaroa and the engineers from Wood Hole Oceanographic Institution and MARUM for the successful operation of ABE, Sentry, Quest 4000, and Jason. The heat flow data surveys were funded by NSF grant OCE‐1558356 (PI Susan Humphris) and a grant from the German Ministry for Education and Research BMBF, project no. 03G0253A (PI Andrea Koschinsky). Funding from the New Zealand Government (Ministry of Business, Innovation and Employment) helped enable this study. This paper was significantly improved by the comments from the Editor Rebecca Carey and from two unknown reviewers. The data used in this paper can be downloaded from the U.S. Lamont‐Doherty MGDS database.2020-01-1

    Interpretation of gravity and magnetic anomalies at Lake Rotomahana: geological and hydrothermal implications

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Journal of Volcanology and Geothermal Research 314 (2016): 84-94, doi:10.1016/j.jvolgeores.2015.07.002.We investigate the geological and hydrothermal setting at Lake Rotomahana, using recently collected potential-field data, integrated with pre-existing regional gravity and aeromagnetic compilations. The lake is located on the southwest margin of the Okataina Volcanic Center (Haroharo caldera) and had well-known, pre-1886 Tarawera eruption hydrothermal manifestations (the famous Pink and White Terraces). Its present physiography was set by the caldera collapse during the 1886 eruption, together with the appearance of surface activities at the Waimangu Valley. Gravity models suggest subsidence associated with the Haroharo caldera is wider than the previously mapped extent of the caldera margins. Magnetic anomalies closely correlate with heat-flux data and surface hydrothermal manifestations and indicate that the west and northwestern shore of Lake Rotomahana are characterized by a large, well-developed hydrothermal field. The field extends beyond the lake area with deep connections to the Waimangu area to the south. On the south, the contact between hydrothermally demagnetized and magnetized rocks strikes along a structural lineament with high heat-flux and bubble plumes which suggest hydrothermal activity occurring west of Patiti Island. The absence of a well-defined demagnetization anomaly at this location suggests a very young age for the underlying geothermal system which was likely generated by the 1886 Tarawera eruption. Locally confined intense magnetic anomalies on the north shore of Lake Rotomahana are interpreted as basalts dikes with high magnetization. Some appear to have been emplaced before the 1886 Tarawera eruption. A dike located in proximity of the southwest lake shore may be related to the structural lineament controlling the development of the Patiti geothermal system, and could have been originated from the 1886 Tarawera eruption.Science funding provided by GNS Science Strategic Development Fund

    3-D focused inversion of near-seafloor magnetic data with application to the Brothers volcano hydrothermal system, Southern Pacific Ocean, New Zealand

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): B10102, doi:10.1029/2012JB009349.We describe and apply a new inversion method for 3-D modeling of magnetic anomalies designed for general application but which is particularly useful for the interpretation of near-seafloor magnetic anomalies. The crust subsurface is modeled by a set of prismatic cells, each with uniform magnetization, that together reproduce the observed magnetic field. This problem is linear with respect to the magnetization, and the number of cells is normally greater than the amount of available data. Thus, the solution is obtained by solving an under-determined linear problem. A focused solution, exhibiting sharp boundaries between different magnetization domains, is obtained by allowing the amplitudes of magnetization to vary between a pre-determined range and by minimizing the region of the 3-D space where the source shows large variations, i.e., large gradients. A regularization functional based on a depth-weighting function is also introduced in order to counter-act the natural decay of the magnetic field intensity with depth. The inversion method has been used to explore the characteristics of the submarine hydrothermal system of Brothers volcano in the Kermadec arc, by inverting near-bottom magnetic data acquired by Autonomous Underwater Vehicles (AUVs). Different surface expressions of the hydrothermal vent fields show specific vertical structures in their underlying demagnetization regions that we interpret to represent hydrothermal upflow zones. For example, at focused vent sites the demagnetized conduits are vertical, pipe-like structures extending to depths of ~1000 m below the seafloor, whereas at diffuse vent sites the demagnetization regions are characterized by thin and inclined conduits.This contribution was made possible through funding by the New Zealand Foundation for Research, Science and Technology (FRST contract C05X0406) and by the Royal Society of New Zealand by the Marsden Fund (grant GNS1003).2013-04-1
    • 

    corecore