20 research outputs found

    Reawakening of dormant estrogen-dependent human breast cancer cells by bone marrow stroma secretory senescence

    No full text
    Abstract Background Dormant estrogen receptor positive (ER+) breast cancer micrometastases in the bone marrow survive adjuvant chemotherapy and recur stochastically for more than 20 years. We hypothesized that inflammatory cytokines produced by stromal injury can re-awaken dormant breast cancer cells. Methods We used an established in vitro dormancy model of Michigan Cancer Foundation-7 (MCF-7) breast cancer cells incubated at clonogenic density on fibronectin-coated plates to determine the effects of inflammatory cytokines on reactivation of dormant ER+ breast cancer cells. We measured induction of a mesenchymal phenotype, motility and the capacity to re-enter dormancy. We induced secretory senescence in murine stromal monolayers by oxidation, hypoxia and estrogen deprivation with hydrogen peroxide (H2O2), carbonyl-cyanide m-chlorophenylhydrazzone (CCCP) and Fulvestrant (ICI 182780), respectively, and determined the effects on growth of co-cultivated breast cancer cells. Results Exogenous recombinant human (rh) interleukin (IL)-6, IL-8 or transforming growth factor β1 (TGFβ1) induced regrowth of dormant MCF-7 cells on fibronectin-coated plates. Dormant cells had decreased expression of E-cadherin and estrogen receptor α (ERα) and increased expression of N-cadherin and SNAI2 (SLUG). Cytokine or TGFβ1 treatment of dormant clones induced formation of growing clones, a mesenchymal appearance, increased motility and an impaired capacity to re-enter dormancy. Stromal injury induced secretion of IL-6, IL-8, upregulated tumor necrosis factor alpha (TNFα), activated TGFβ and stimulated the growth of co-cultivated MCF-7 cells. MCF-7 cells induced secretion of IL-6 and IL-8 by stroma in co-culture. Conclusions Dormant ER+ breast cancer cells have activated epithelial mesenchymal transition (EMT) gene expression programs and downregulated ERα but maintain a dormant epithelial phenotype. Stromal inflammation reactivates these cells, induces growth and a mesenchymal phenotype. Reactivated, growing cells have an impaired ability to re-enter dormancy. In turn, breast cancer cells co-cultured with stroma induce secretion of IL-6 and IL-8 by the stroma, creating a positive feedback loop

    Synthesis and Evaluation of Biological Activities for a Novel 1,2,3,4-Tetrahydroisoquinoline Conjugate with Dipeptide Derivatives: Insights from Molecular Docking and Molecular Dynamics Simulations

    No full text
    Peptide synthesis has opened new frontiers in the quest for bioactive molecules with limitless biological applications. This study presents the synthesis of a series of novel isoquinoline dipeptides using advanced spectroscopic techniques for characterization. These compounds were designed with the goal of discovering unexplored biological activities that could contribute to the development of novel pharmaceuticals. We evaluated the biological activities of novel compounds including their antimicrobial, antibacterial, and antifungal properties. The results show promising activity against Escherichia coli and potent antibacterial activity against MTCC 443 and MTCC 1688. Furthermore, these compounds demonstrate strong antifungal activity, outperforming existing standard drugs. Computational binding affinity studies of tetrahydroisoquinoline-conjugated dipeptides against E. coli DNA gyrase displayed significant binding interactions and binding affinity, which are reflected in antimicrobial activities of compounds. Our integrative significant molecular findings from both wet and dry laboratories would help pave a path for the development of antimicrobial therapeutics. The findings suggest that these isoquinoline-conjugated dipeptides could be excellent candidates for drug development, with potential applications in the fight against bacterial and fungal infections. This research represents an exciting step forward in the field of peptide synthesis and its potential to discover novel bioactive molecules with significant implications for human health
    corecore