338 research outputs found

    Typification of names in genus Hieracium based on original herbarium material of Alexis Jordan and Alexandre Boreau

    Get PDF
    181 names of Hieracium species going back to original herbarium material of Alexis Jordan or Alexandre Boreau are lectotypified, 27 are neotypified. The study is based on herbarium specimens of the Université Catholique de Lyon (LY) and Ville d’Angers (ANG), Martrin-Donos’s herbarium at the Institut Botanique de Montpellier (MPUTarn) and Arvet-Touvet’s herbarium at the Musée d’Histoire Naturelle de Grenoble (GRM-AT). The type specimens are illustrated by photographs of the entire herbarium sheets with some detail views of flower heads and leaves. Usual nomenclatural synonyms are given for each taxon

    Investigation of four-year chemical composition and organic aerosol sources of submicron particles at the ATOLL site in northern France

    Get PDF
    This study presents the first long-term online measurements of submicron (PM1) particles at the ATOLL (ATmospheric Observations in liLLe) platform, in northern France. The ongoing measurements using an Aerosol Chemical Speciation Monitor (ACSM) started at the end of 2016 and the analysis presented here spans through December 2020. At this site, the mean PM1 concentration is 10.6 μg m-3, dominated by organic aerosols (OA, 42.3%) and followed by nitrate (28.9%), ammonium (12.3%), sulfate (8.6%), and black carbon (BC, 8.0%). Large seasonal variations of PM1 concentrations are observed, with high concentrations during cold seasons, associated with pollution episodes (e.g. over 100 μg m-3 in January 2017). To study OA origins over this multiannual dataset we performed source apportionment analysis using rolling positive matrix factorization (PMF), yielding two primary OA factors, a traffic-related hydrocarbon-like OA (HOA) and biomass-burning OA (BBOA), and two oxygenated OA (OOA) factors. HOA showed a homogeneous contribution to OA throughout the seasons (11.8%), while BBOA varied from 8.1% (summer) to 18.5% (winter), the latter associated with residential wood combustion. The OOA factors were distinguished between their less and more oxidized fractions (LO-OOA and MO-OOA, on average contributing 32% and 42%, respectively). During winter, LO-OOA is identified as aged biomass burning, so at least half of OA is associated with wood combustion during this season. Furthermore, ammonium nitrate is also a predominant aerosol component during cold-weather pollution episodes - associated with fertilizer usage and traffic emissions. This study provides a comprehensive analysis of submicron aerosol sources at the recently established ATOLL site in northern France from multiannual observations, depicting a complex interaction between anthropogenic and natural sources, leading to different mechanisms of air quality degradation in the region across different seasons

    Geodesic and Path Motion in the Nonsymmetric Gravitational Theory

    Full text link
    We study the problem of test-particle motion in the Nonsymmetric Gravitational Theory (NGT) assuming the four-velocity of the particle is parallel-transported along the trajectory. The predicted motion is studied on a static, spherically symmetric background field, with particular attention paid to radial and circular motions. Interestingly, it is found that the proper time taken to travel between any two non-zero radial positions is finite. It is also found that circular orbits can be supported at lower radii than in General Relativity for certain forms of motion. We present three interactions which could be used as alternate methods for coupling a test-particle to the antisymmetric components of the NGT field. One of these takes the form of a Yukawa force in the weak-field limit of a static, spherically symmetric field, which could lead to interesting phenomenology.Comment: 17 pages, REVTeX 3.0 with amssymb.st

    Born-Infeld Theory and Stringy Causality

    Get PDF
    Fluctuations around a non-trivial solution of Born-Infeld theory have a limiting speed given not by the Einstein metric but the Boillat metric. The Boillat metric is S-duality invariant and conformal to the open string metric. It also governs the propagation of scalars and spinors in Born-Infeld theory. We discuss the potential clash between causality determined by the closed string and open string light cones and find that the latter never lie outside the former. Both cones touch along the principal null directions of the background Born-Infeld field. We consider black hole solutions in situations in which the distinction between bulk and brane is not sharp such as space filling branes and find that the location of the event horizon and the thermodynamic properties do not depend on whether one uses the closed or open string metric. Analogous statements hold in the more general context of non-linear electrodynamics or effective quantum-corrected metrics. We show how Born-Infeld action to second order might be obtained from higher-curvature gravity in Kaluza-Klein theory. Finally we point out some intriguing analogies with Einstein-Schr\"odinger theory.Comment: 31 pages, 4 figures, LaTex; Some comments and references adde

    Grain Boundaries in Graphene on SiC(0001ˉ\bar{1}) Substrate

    Full text link
    Grain boundaries in epitaxial graphene on the SiC(0001ˉ\bar{1}) substrate are studied using scanning tunneling microscopy and spectroscopy. All investigated small-angle grain boundaries show pronounced out-of-plane buckling induced by the strain fields of constituent dislocations. The ensemble of observations allows to determine the critical misorientation angle of buckling transition θc=19± 2\theta_c = 19 \pm~2^\circ. Periodic structures are found among the flat large-angle grain boundaries. In particular, the observed θ=33±2\theta = 33\pm2^\circ highly ordered grain boundary is assigned to the previously proposed lowest formation energy structural motif composed of a continuous chain of edge-sharing alternating pentagons and heptagons. This periodic grain boundary defect is predicted to exhibit strong valley filtering of charge carriers thus promising the practical realization of all-electric valleytronic devices

    Atomic Configuration of Nitrogen Doped Single-Walled Carbon Nanotubes

    Get PDF
    Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically-resolved electron energy-loss spectroscopy to detect individual nitrogen dopants in single-walled carbon nanotubes and compared with first principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighbouring local lattice distortion such as Stone-Thrower-Wales defects. The stability under the electron beam of these nanotubes has been studied in two extreme cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures.Comment: 25 pages, 13 figure
    corecore