434 research outputs found

    'We don't learn democracy, we live it!' : consulting the pupil voice in Scottish schools

    Get PDF
    As the education for citizenship agenda continues to impact on schools, there is a need to begin the discussion around examining the kind of initiatives that can push it forward. In Scotland the proposals should, it is argued, permeate the curriculum throughout the school. Yet there is the fear that the responsibility of all can become the responsibility of none. This paper examines, through case study research carried out by the authors, initiatives in schools designed to take forward the citizenship agenda in the light of children's rights. The first two relate to firstly the impact of pupil councils in primary schools and secondly the impact of discussing controversial issues in the primary classroom. The third outlines the impact on values and dispositions of developing more participatory, democratic practice in the classroom. The paper concludes by calling for both more initiatives of this type and more evaluation of their worth

    Ethical and methodological issues in engaging young people living in poverty with participatory research methods

    Get PDF
    This paper discusses the methodological and ethical issues arising from a project that focused on conducting a qualitative study using participatory techniques with children and young people living in disadvantage. The main aim of the study was to explore the impact of poverty on children and young people's access to public and private services. The paper is based on the author's perspective of the first stage of the fieldwork from the project. It discusses the ethical implications of involving children and young people in the research process, in particular issues relating to access and recruitment, the role of young people's advisory groups, use of visual data and collection of data in young people's homes. The paper also identifies some strategies for addressing the difficulties encountered in relation to each of these aspects and it considers the benefits of adopting participatory methods when conducting research with children and young people

    Comprehensive molecular characterisation of epilepsy-associated glioneuronal tumours

    Get PDF
    Glioneuronal tumours are an important cause of treatment-resistant epilepsy. Subtypes of tumour are often poorly discriminated by histological features and may be difficult to diagnose due to a lack of robust diagnostic tools. This is illustrated by marked variability in the reported frequencies across different epilepsy surgical series. To address this, we used DNA methylation arrays and RNA sequencing to assay the methylation and expression profiles within a large cohort of glioneuronal tumours. By adopting a class discovery approach, we were able to identify two distinct groups of glioneuronal tumour, which only partially corresponded to the existing histological classification. Furthermore, by additional molecular analyses, we were able to identify pathogenic mutations in BRAF and FGFR1, specific to each group, in a high proportion of cases. Finally, by interrogating our expression data, we were able to show that each molecular group possessed expression phenotypes suggesting different cellular differentiation: astrocytic in one group and oligodendroglial in the second. Informed by this, we were able to identify CCND1, CSPG4, and PDGFRA as immunohistochemical targets which could distinguish between molecular groups. Our data suggest that the current histological classification of glioneuronal tumours does not adequately represent their underlying biology. Instead, we show that there are two molecular groups within glioneuronal tumours. The first of these displays astrocytic differentiation and is driven by BRAF mutations, while the second displays oligodendroglial differentiation and is driven by FGFR1 mutations

    Invited to labour or participate: intra- and inter-generational distinctions and the role of capital in children’s invited participation

    Get PDF
    This paper applies aspects of Bourdieu’s conceptual toolkit related to capital, and analyses inter- and intra-generational relations of influence. Applying Bourdieu’s concepts to examples of case studies from a children’s parliament in Finland, and with reference to an adult resident forum, moments of continuity and disruption in the relatively stable patterns of distinction between children and adults emerge. Children in school councils (at times) are labourers for agendas set by teachers, but the children at the top of the structure’s hierarchy can benefit from cultural capital and a functional capital that enables them to set agendas and direct the work of others. The political capital of the person presenting views from the participation sphere and the dominant symbolic capital of market logics appear to have a greater impact than generation on the influence participants achieve. Unquestioned acceptance of this differentiation suggests that new approaches to invited participation structures are needed

    Identifying cellular signalling molecules in developmental disorders of the brain: Evidence from focal cortical dysplasia and tuberous sclerosis

    Get PDF
    AIMS: We understand little of the pathogenesis of developmental cortical lesions, because we understand little of the diversity of the cell types that contribute to the diseases or how those cells interact. We tested the hypothesis that cellular diversity and cell–cell interactions play an important role in these disorders by investigating the signalling molecules in the commonest cortical malformations that lead to childhood epilepsy, focal cortical dysplasia (FCD) and tuberous sclerosis (TS). METHODS: Transcriptional profiling clustered cases into molecularly distinct groups. Using gene expression data, we identified the secretory signalling molecules in FCD/TS and characterised the cell types expressing these molecules. We developed a functional model using organotypic cultures. RESULTS: We identified 113 up-regulated secretory molecules in FCDIIB/TS. The top 12 differentially expressed genes (DEGs) were validated by immunohistochemistry. This highlighted two molecules, Chitinase 3-like protein 1 (CHI3L1) and C-C motif chemokine ligand 2 (CCL2) (MCP1) that were expressed in a unique population of small cells in close proximity to balloon cells (BC). We then characterised these cells and developed a functional model in organotypic slice cultures. We found that the number of CHI3L1 and CCL2 expressing cells decreased following inhibition of mTOR, the main aberrant signalling pathway in TS and FCD. CONCLUSIONS: Our findings highlight previously uncharacterised small cell populations in FCD and TS which express specific signalling molecules. These findings indicate a new level of diversity and cellular interactions in cortical malformations and provide a generalisable approach to understanding cell–cell interactions and cellular heterogeneity in developmental neuropathology

    GRB 120711A: an intense INTEGRAL burst with long-lasting soft gamma-ray emission and a powerful optical flash

    Get PDF
    A long and intense gamma-ray burst (GRB) was detected by INTEGRAL on July 11 2012 with a duration of ~115s and fluence of 2.8x10^-4 erg cm^-2 in the 20 keV-8 MeV energy range. GRB 120711A was at z~1.405 and produced soft gamma-ray emission (>20 keV) for at least ~10 ks after the trigger. The GRB was observed by several ground-based telescopes that detected a powerful optical flash peaking at an R-band brightness of ~11.5 mag at ~126 s after the trigger. We present a comprehensive temporal and spectral analysis of the long-lasting soft gamma-ray emission detected in the 20-200 keV band with INTEGRAL, the Fermi/LAT post-GRB detection above 100 MeV, the soft X-ray afterglow from XMM-Newton, Chandra, and Swift and the optical/NIR detections from Watcher, Skynet, GROND, and REM. We modelled the long-lasting soft gamma-ray emission using the standard afterglow scenario, which indicates a forward shock origin. The combination of data extending from the NIR to GeV energies suggest that the emission is produced by a broken power-law spectrum consistent with synchrotron radiation. The afterglow is well modelled using a stratified wind-like environment with a density profile k~1.2, suggesting a massive star progenitor (i.e. Wolf-Rayet). The analysis of the reverse and forward shock emission reveals an initial Lorentz factor of ~120-340, a jet half-opening angle of ~2deg-5deg, and a baryon load of ~10^-5-10^-6 Msun consistent with the expectations of the fireball model when the emission is highly relativistic. Long-lasting soft gamma-ray emission from other INTEGRAL GRBs with high peak fluxes, such as GRB 041219A, was not detected, suggesting that a combination of high Lorentz factor, emission above 100 MeV, and possibly a powerful reverse shock are required. Similar long-lasting soft gamma-ray emission has recently been observed from the nearby and extremely bright Fermi/LAT burst GRB 130427A.Comment: 21 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production
    • …
    corecore