1,049 research outputs found

    Development of 3D Compression Molded Composite Primary Structure

    Get PDF
    The work accomplished by the Black Gold team improved upon the carbon fiber compression molding research and information available on the Cal Poly San Luis Obispo campus. The team used the rear suspension rocker arm off a Ventana Alpino mountain bike as a design goal for this project. This research and body of work includes the methods used to design a compression molded part for complex part loading and shape. This extends to the process of choosing an appropriate layup process, in addition to benefits and drawbacks of the use of chopped fibers in compression molding. The research includes the process and information required to build aluminum molds for compression molded parts of complex shape; manufacturing techniques, and suggestions for the use of compression molding carbon fiber. Finally, data is presented which compares the final compression molding results under ultimate and relative stiffness testing to a comparable part made from aluminum. Ultimately, the team found that compression molding proved to be a potential manufacturing alternative. The rocker arms produced by the team were able to withstand a load of up to 800lbs; meeting the teams initial design criteria before experiencing localized fractures. With future iteration, and more focus on design for loading, the process could yield parts which could carry much higher loads. In addition, the use of chopped fiber around the bearings regions was a success, ultimately showing that a combination of chopped and cloth fiber was a useful load carrying combination. Further research in these processes would definitively improve upon the results obtained by the team, and as information regarding compression molding increases the team expects its use to become more popular

    Halorubrum pleomorphic virus-6 Membrane Fusion Is Triggered by an S-Layer Component of Its Haloarchaeal Host

    Get PDF
    (1) Background: Haloarchaea comprise extremely halophilic organisms of the Archaea domain. They are single-cell organisms with distinctive membrane lipids and a protein-based cell wall or surface layer (S-layer) formed by a glycoprotein array. Pleolipoviruses, which infect haloarchaeal cells, have an envelope analogous to eukaryotic enveloped viruses. One such member, Halorubrum pleomorphic virus 6 (HRPV-6), has been shown to enter host cells through virus-cell membrane fusion. The HRPV-6 fusion activity was attributed to its VP4-like spike protein, but the physiological trigger required to induce membrane fusion remains yet unknown. (2) Methods: We used SDS-PAGE mass spectroscopy to characterize the S-layer extract, established a proteoliposome system, and used R18-fluorescence dequenching to measure membrane fusion. (3) Results: We show that the S-layer extraction by Mg2+ chelating from the HRPV-6 host, Halorubrum sp. SS7-4, abrogates HRPV-6 membrane fusion. When we in turn reconstituted the S-layer extract from Hrr. sp. SS7-4 onto liposomes in the presence of Mg2+, HRPV-6 membrane fusion with the proteoliposomes could be readily observed. This was not the case with liposomes alone or with proteoliposomes carrying the S-layer extract from other haloarchaea, such as Haloferax volcanii. (4) Conclusions: The S-layer extract from the host, Hrr. sp. SS7-4, corresponds to the physiological fusion trigger of HRPV-6

    Halorubrum pleomorphic virus-6 Membrane Fusion Is Triggered by an S-Layer Component of Its Haloarchaeal Host

    Get PDF
    (1) Background: Haloarchaea comprise extremely halophilic organisms of the Archaea domain. They are single-cell organisms with distinctive membrane lipids and a protein-based cell wall or surface layer (S-layer) formed by a glycoprotein array. Pleolipoviruses, which infect haloarchaeal cells, have an envelope analogous to eukaryotic enveloped viruses. One such member, Halorubrum pleomorphic virus 6 (HRPV-6), has been shown to enter host cells through virus-cell membrane fusion. The HRPV-6 fusion activity was attributed to its VP4-like spike protein, but the physiological trigger required to induce membrane fusion remains yet unknown. (2) Methods: We used SDS-PAGE mass spectroscopy to characterize the S-layer extract, established a proteoliposome system, and used R18-fluorescence dequenching to measure membrane fusion. (3) Results: We show that the S-layer extraction by Mg2+ chelating from the HRPV-6 host, Halorubrum sp. SS7-4, abrogates HRPV-6 membrane fusion. When we in turn reconstituted the S-layer extract from Hrr. sp. SS7-4 onto liposomes in the presence of Mg2+, HRPV-6 membrane fusion with the proteoliposomes could be readily observed. This was not the case with liposomes alone or with proteoliposomes carrying the S-layer extract from other haloarchaea, such as Haloferax volcanii. (4) Conclusions: The S-layer extract from the host, Hrr. sp. SS7-4, corresponds to the physiological fusion trigger of HRPV-6

    Electron-hole and plasmon excitations in 3d transition metals: Ab initio calculations and inelastic x-ray scattering measurements

    Full text link
    We report extensive all-electron time-dependent density-functional calculations and nonresonant inelastic x-ray scattering measurements of the dynamical structure factor of 3d transition metals. For small wave vectors, a plasmon peak is observed which is well described by our calculations. At large wave vectors, both theory and experiment exhibit characteristic low-energy electron-hole excitations of d character which correlate with the presence of d bands below and above the Fermi level. Our calculations, which have been carried out in the random-phase and adiabatic local-density approximations, are found to be in remarkable agreement with the measured dynamical structure factor of Sc and Cr at energies below the semicore onset energy (M-edge) of these materials.Comment: To appear in Phys. Rev.

    Massey products in symplectic manifolds

    Full text link
    The paper is devoted to study of Massey products in symplectic manifolds. Theory of generalized and classical Massey products and a general construction of symplectic manifolds with nontrivial Massey products of arbitrary large order are exposed. The construction uses the symplectic blow-up and is based on the author results, which describe conditions under which the blow-up of a symplectic manifold X along its submanifold Y inherits nontrivial Massey products from X ot Y. This gives a general construction of nonformal symplectic manifolds.Comment: LaTeX, 48 pages, 2 figure

    The role of angular momentum in the construction of electromagnetic multipolar fields

    Get PDF
    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions originating from different derivations can be difficult to compare. Some of the derivations of the multipolar solutions do not explicitly show their relation to the angular momentum operators, thus hiding important properties of these solutions. In this article, the relation between two of the most common derivations of this set of solutions is explicitly shown and their relation to the angular momentum operators is exposed.Comment: 13 pages, 2 figure
    • …
    corecore