994 research outputs found

    Micro-kinetic modeling of NH3 decomposition on Ni and its application to solid oxide fuel cells

    Get PDF
    This paper presents a detailed surface reaction mechanism for the decomposition of NH3 to H2 and N2 on a Ni surface. The mechanism is validated for temperatures ranging from 700 to 1500K and pressures from 5.3Pa to 100kPa. The activation energies for various elementary steps are calculated using the unity bond index-quadratic exponential potential (UBI-QEP) method. Sensitivity analysis is carried out to study the influence of various kinetic parameters on reaction rates. The NH3 decomposition mechanism is used to simulate SOFC button cell operating on NH3 fuel

    Studies and analyses of the space shuttle main engine: High-pressure oxidizer turbopump failure information propagation model

    Get PDF
    The high-pressure oxidizer turbopump (HPOTP) failure information propagation model (FIPM) is presented. The text includes a brief discussion of the FIPM methodology and the various elements which comprise a model. Specific details of the HPOTP FIPM are described. Listings of all the HPOTP data records are included as appendices

    Kinetic modeling and simulation of high-temperature by-product formation from urea decomposition

    Get PDF
    The Selective catalytic reduction (SCR) technique is widely applied in exhaust gas after-treatment of diesel engines. Depending on operating conditions, injected urea-water solution (UWS) can form liquid films on mixer blades and the pipe wall. Evaporation and subsequent reactions in the wall film can lead to deposits of urea and by-products, respectively. Especially deposits that are not decomposed up to high temperatures are challenging for the SCR technique. Thermogravimetric experiments are conducted for these stable urea by-products, such as ammelide, ammeline and their by-products, such as cyanamide or melamine. An analysis of the evolving gases during thermal decomposition led to a more detailed understanding of the kinetics. The postulated mechanism is able to predict the thermogravimetric analyses results and the effects of variation of the experimental conditions such as initial sample mass and heating rates. The evaluated kinetics, together with the recently developed kinetics for the urea/biuret/triuret/cyanuric acid system Tischer et al. (2019), can now be integrated into CFD simulations of SCR systems to numerically simulate all relevant physical and chemical processes in UWS equipped aftertreatment systems for a wide range of conditions

    Urban Dust Microbiome: Impact on Later Atopy and Wheezing

    Get PDF
    INTRODUCTION: Investigations in urban areas have just begun to explore how the indoor dust microbiome may affect the pathogenesis of asthma and allery. We aimed to investigate the early fungal and bacterial microbiome in house dust with allergic sensitization and wheezing later in childhood. METHODS: Individual dust samples from 189 homes of the LISAplus birth cohort study were collected shortly after birth from living room floors and profiled for fungal and bacterial microbiome. Fungal and bacterial diversity was assessed with terminal restriction fragment length polymorphism (tRFLP) and defined by the Simpson diversity index. Information on wheezing outcomes and co-variates until the age of 10 years was obtained by parental questionnaires. Information on specific allergic sensitization was available at 6 and 10 years. Logistic regression and General Estimation Equation (GEE) models were used to examine the relationship between microbial diversity and health outcomes. RESULTS: Logistic regression analyses revealed a significantly reduced risk of developing sensitization to aero-allergens at 6 years and ever wheezing until the age of 10 years for exposure to higher fungal diversity (adjusted Odds Ratio aOR (95%CI): 0.26 (0.10-0.70)), and 0.42 (0.18-0.96), respectively), in adjusted analyses. The associations were attenuated for the longitudinal analyses (GEE) until the age of 10 years. There was no association between higher exposure to bacterial diversity and the tested health outcomes. CONCLUSION: Higher early exposure to fungal diversity might help to prevent from developing sensitization to aero-allergens in early childhood, but the reasons for attenuated effects in later childhood require further prospective studies

    Mortality of Patients with Hematological Malignancy after Admission to the Intensive Care Unit

    Get PDF
    Background: The admission of patients with malignancies to an intensive care unit (ICU) still remains a matter of substantial controversy. The identification of factors that potentially influence the patient outcome can help ICU professionals make appropriate decisions. Patients and Methods: 90 adult patients with hematological malignancy (leukemia 47.8%, high-grade lymphoma 50%) admitted to the ICU were analyzed retrospectively in this single-center study considering numerous variables with regard to their influence on ICU and day-100 mortality. Results: The median simplified acute physiology score (SAPS) II at ICU admission was 55 (ICU survivors 47 vs. 60.5 for non-survivors). The overall ICU mortality rate was 45.6%. With multivariate regression analysis, patients admitted with sepsis and acute respiratory failure had a significantly increased ICU mortality (sepsis odds ratio (OR) 9.12, 95% confidence interval (CI) 1.1-99.7, p = 0.04; respiratory failure OR 13.72, 95% CI 1.39-136.15, p = 0.025). Additional factors associated with an increased mortality were: high doses of catecholamines (ICU: OR 7.37, p = 0.005; day 100: hazard ratio (HR) 2.96, p < 0.0001), renal replacement therapy (day 100: HR 1.93, p = 0.026), and high SAPS II (ICU: HR 1.05, p = 0.038; day 100: HR 1.2, p = 0.027). Conclusion: The decision for or against ICU admission of patients with hematological diseases should become increasingly independent of the underlying malignant disease
    corecore