

Jahrestreffen ProcessNet-Fachgruppe Mehrphasenströmungen 14.-15. März 2017 Dresden

Periodic

condition

A Numerical Study on Gas-Liquid Taylor Flow for Catalytic Hydrogenation of Nitrobenzene with Detailed Kinetic Mechanism

M. Woo¹, M. Wörner¹, L. Maier¹, S. Tischer¹, O. Deutschmann^{1,2} ¹Institute of Catalysis Research and Technology (IKFT) ²Institute for Chemical Technology and Polymer Chemistry (ITCP)

Objectives

Catalyzed wall Simulation of the heterogeneously catalyzed hydrogenation of nitrobenzene to aniline for Taylor flow in a monolith reactor Periodic Hydrogen Flow driven by condition pressure drop Methodology Nitrobenzene Coupling two computer codes: TURBIT-VOF [1] for the gas-liquid Catalyzed wal flow and DETCHEM[™] [2] for the reaction kinetics at the wall (Hydrogenation of nitrobenzene) Test conditions · Moving reference frame approach for mass transfer simulations Temperature T = 323 K, pressure p = 7 bar, channel height $h = 100 \ \mu m$ · Detailed reaction mechanism based on density functional theory Reynolds number $Re=\rho_L h U_B/\mu_L=120$, capillary number $Ca = U_B \mu_L/\sigma=0.044$

Evaluate wall concentrations

by linear extrapolation

Update reactive fluxes at

the boundary

Time step

n+1

Numerical approaches

Hydrodynamics

- Two-dimensional incompressible Navier-Stokes equation with Volume-of-fluid (VOF) method
- Isothermal simulation, no phase change
- Constant physical properties
- Simulation in fixed frame of reference till quasi-steady state

Quasi-steady state velocity field of the Taylor flow in fixed (bottom half) and moving (upper half) frame of reference

Non-dimensional Dimensional

= c/c

 $= \dot{s}/(u_{ref}c_{ref})$

 $c_i \pmod{m^3}$

 $(mol/m^2 \cdot s)$

Reaction mechanism

3 bulk species, 10 surface species Reaction path from nitrobenzene to aniline for T>400 K (mechanism B [3])* Nitrobenzene, NB(Pd) NO₂ alculate reaction rates Aniline, AN(Pd) $\dot{s}_i = \sum v_{ik} k_k \prod c_i$ -OH NBH(Pd) ò +H +H -OH PHNH(Pd) NBH2(Pd) юн H₂O Mass transfer in moving reference frame ÷Η Concentration equations are solved with frozen PHG(Pd) velocity field from hydrodynamic simulation юн One way coupling, no homogeneous reaction PHA(Pd)

H₂C

* Reaction rate at 1500 K is utilized for qualitative analysis

Reactive mass transfer with a Taylor flow

Temporal distributions of bulk and surface species C*H2[-] (Upper half) C*AN[-] 02 1205 02 1655 02 212

Time evolution of bulk and surface species

Conclusions

- Development of computer code for gas-liquid Taylor flow with surface reaction has been accomplished by coupling TURBIT-VOF/DETCHEM™
- Moving reference frame approach allows saving computational time supposed the feedback of mass transfer on hydrodynamics is negligible
- · Using a detailed reaction mechanism, a qualitative analysis on the coupling between bulk and surface species has been accomplished

References

0.

fraction [-]

Site 1

٥

0

- A. Onea et al., Chem. Eng. Sci. 64 (2009) 1416-1435
 O. Deutschmann et al., DETCHEM[™] User Manual, 2012, http://www.detchem.con
 L. Zhang et al., RSC. Adv. 5 (2015) 34319

Acknowledgement

We gratefully acknowledge the funding of this project by Helmholtz Energy Alliance "Energy Efficient Chemical Multiphase Processes" (HA-E-0004) and thank the Steinbeis GmbH for a cost-free license of DETCHEM™