98 research outputs found

    Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems

    Get PDF
    Industrially produced N-fertilizer is essential to the production of cereals that supports current and projected human populations. We constructed a top-down global N budget for maize, rice, and wheat for a 50-year period (1961 to 2010). Cereals harvested a total of 1551 Tg of N, of which 48% was supplied through fertilizer-N and 4% came from net soil depletion. An estimated 48% (737 Tg) of crop N, equal to 29, 38, and 25 kg ha−1 yr−1 for maize, rice, and wheat, respectively, is contributed by sources other than fertilizer- or soil-N. Non-symbiotic N2 fixation appears to be the major source of this N, which is 370 Tg or 24% of total N in the crop, corresponding to 13, 22, and 13 kg ha−1 yr−1 for maize, rice, and wheat, respectively. Manure (217 Tg or 14%) and atmospheric deposition (96 Tg or 6%) are the other sources of N. Crop residues and seed contribute marginally. Our scaling-down approach to estimate the contribution of non-symbiotic N2 fixation is robust because it focuses on global quantities of N in sources and sinks that are easier to estimate, in contrast to estimating N losses per se, because losses are highly soil-, climate-, and crop-specific

    Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels

    No full text
    Water and nutrient availability are two major constraints in most rice-based rainfed shallow lowland systems of Asia. Both stresses interact and contribute to the low productivity and widespread poverty in this environment. The objective of this study was to improve the understanding of interaction between the two factors and to identify varietal characteristics beneficial for productivity in a water- and nutrient-limited rice environment. For this purpose, we screened 19 rice genotypes adapted to different rice environments under two water and two nutrient treatments during the wet season of 2004 and 2005 in southern Luzon, Philippines. Across all genotypes tested and in comparison with the irrigated control, rainfed conditions reduced grain yield of the treatment without N application by 69% in 2004 and by 59% in 2005. The mean nitrogen fertilizer response was highest in the dryer season of 2004 and the rainfed treatment, indicating that water stress had no effect on fertilizer response. Nitrogen application reduced the relative yield loss to 49% of the irrigated treatment in 2004 and to 52% of the irrigated treatment in 2005. Internal efficiency of N (IEN) and recovery efficiency of applied N (REN) were significantly different between genotypes, but were not affected by water availability (REN) or by water and nutrient availability (IEN). In contrast, grain yield and total N uptake were affected by cultivar, N and water availability. Therefore, germplasm for rainfed environments should be screened under conditions of limited and good nitrogen and water supplies. The four best cultivars, CT6510-24-1-2, IR55423-01, IR72, and IR57514-PMI5-B-1-2, performed well across all treatments and both years. Except for IR72, they were all characterized by medium height, medium duration, high early vigor, and a moderate level of drought tolerance. This combination of characteristics seems to enable the optimal use of limited water and nutrient resources occurring in many shallow rainfed lowlands. We also concluded that moderate drought stress does not necessarily affect the response to moderate N rates, provided that drought does not induce high spikelet sterility and that fertilizer N is properly managed.S.M. Haefele, S.M.A. Jabbar, J.D.L.C. Siopongco, A. Tirol-Padre, S.T. Amarante, P.C. Sta Cruz, W.C. Cosic

    Influence of climate variability on seasonal and interannual variations of ecosystem CO2 exchange in flooded and non-flooded rice fields in the Philippines

    No full text
    Seasonal rainfall in the Philippines is known to be modulated by ENSO phenomenon, with El Niño frequently contributing to reduced rainfall and drought while La Niña resulting in excessive rainfalls, floods and more intense typhoons. The alterations in rainfall patterns can have considerable feedback on solar radiation, air temperature, and soil moisture which can affect the ecosystem CO2 exchange. In this paper, we assessed the effects of the ENSO events (2008–mid 2010) on the seasonal climate conditions and determined how it affected the gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production (NEP) of two contrasting rice environments: flooded and non-flooded. The 2008 dry season (DS) was under a La Niña event while the 2008 wet season (WS) was a neutral one with strong tropical cyclones associated during the wet season. The 2009DS was also La Niña while the 2009WS was El Niño; however, the northern part of the Philippines experienced strong tropical cyclones. The 2010DS was under an El Niño event. The La Niña in 2008DS resulted in about 15% lower solar radiation (SR), 0.3 °C lower air temperature (Ta) and 60% higher precipitation compared to the 28-year climate normal patterns. Both flooded and non-flooded rice fields had lower NEP in 2008 DS (164 and 14 g C m−2, respectively) than in 2008 WS (295 and 82 g C m−2, respectively) because the climate anomaly resulted in SR – driven decrease in GPP. The La Niña in 2009DS even resulted in 0.2 °C lower air temperature and 40% more precipitation than the 2008DS La Niña. This cooler temperature resulted in lower Re in flooded rice fields while the higher precipitation resulted in higher GPP in non-flooded fields since the climate was favorable for the growth of the aerobic rice, the ratoon crops and the weeds. This climate anomaly benefitted both flooded and non-flooded rice fields by increasing NEP (351 and 218 g C m−2, respectively). However, NEP decreased in 2009WS in both flooded and non-flooded rice fields (225 and 39 g C m−2, respectively) due to the devastating effects of the strong tropical cyclones that hit the northern part of the Philippines. On the other hand, the El Niño event during 2010DS resulted in about 6% higher solar radiation, 0.4 °C higher air temperature and 67% lower precipitation than the 28-year climate normal pattern. The NEP of flooded and non-flooded rice fields were closely similar at 187 and 174 g C m−2, respectively. This climate anomaly resulted in Ta – driven increase in Re, as well as vapor pressure deficit (VPD) – driven decrease in GPP in flooded rice fields. The GPP and Re in non-flooded rice fields were less sensitive to higher VPD and higher Ta, respectively. It appears that the net ecosystem CO2 exchange in non-flooded rice field was less sensitive to an El Niño event

    Site-specific feasibility of alternate wetting and drying as a greenhouse gas mitigation option in irrigated rice fields in Southeast Asia: a synthesis

    No full text
    <p>This study comprises a comprehensive assessment, integration, and synthesis of data gathered from a 3-year field experiment conducted at four sites in Southeast Asia, namely Hue, Vietnam; Jakenan, Indonesia; Prachin Buri, Thailand; and Muñoz, Philippines, to assess the site-specific feasibility of alternate wetting and drying (AWD) as a greenhouse gas (GHG) mitigation option in irrigated rice fields. AWD effectively reduced water use compared to continuous flooding (CF) but did not significantly reduce rice grain yield and soil carbon content in all sites. Methane (CH<sub>4</sub>) emissions varied significantly among sites and seasons as affected by soil properties and water management. AWD reduced CH<sub>4</sub> emissions relative to CF by 151 (25%), 166 (37%), 9 (31%), and 22 (32%) kg CH<sub>4</sub> ha<sup>−1</sup> season<sup>−1</sup> in Hue, Jakenan, Prachin Buri, and Muñoz, respectively. In Prachin Buri and Muñoz, AWD reduced CH<sub>4</sub> emissions only during the dry season. Site-specific CH<sub>4</sub> emission factors (EFs) ranged 0.13–4.50 and 0.08–4.88 kg CH<sub>4</sub> ha<sup>−1</sup> d<sup>−1</sup> under CF and AWD, respectively. The mean AWD scaling factors (SFs) was 0.69 (95% confidence interval: 0.61–0.77), which is slightly higher than the Intergovernmental Panel on Climate Change (IPCC)’ SF for multiple aeration of 0.52 (error range: 0.41–0.66). Significant reductions in the global warming potential (GWP) of CH<sub>4</sub>+nitrous oxide (N<sub>2</sub>O) by AWD were observed in Hue and Jakenan (27.8 and 36.1%, respectively), where the contributions of N<sub>2</sub>O to the total GWP were only 0.8 and 3.5%, respectively. In Muñoz, however, CH<sub>4</sub> emission reduction through AWD was offset by the increase in N<sub>2</sub>O emissions. The results indicate that the IPCC’s SF for multiple aeration may only be applied to irrigated rice fields where surface water level is controllable for a substantial period. This study underscores the importance of practical feasibility and appropriate timing of water management in successful GHG reductions by AWD.</p
    corecore