155 research outputs found

    3-Phenyl-N,N,N′,N′-tetra­methyl-1-ethyne-1-carboximidamidium bromide

    Get PDF
    The reaction of 3,3,3-tris­(dimethyl­amino)-1-phenyl­prop-1-yne with bromine in pentane yields the title compound, C13H17N2 +·Br−. The acetyl­enic bond distance [1.197 (2) Å] is consistent with a C C triple bond. The amidinium C=N bonds [1.325 (2) and 1.330 (2) Å] have double-bond character and the positive charge is delocalized between the two dimethyl­amino groups

    1,1,2,2-Tetra­kis(dimethyl­amino)­ethane-1,2-diium bis­(tetra­phenyl­borate) acetone disolvate

    Get PDF
    The title compound, C10H24N4 2+·2C24H20B−·2C3H6O, crystallizes with two acetone solvent mol­ecules per asymmetric unit. In the dication, both amidinium units are twisted about the central C—C single bond by 63.8 (3)° and the positive charges are delocalized over both N—C—N planes

    2-[4-(Carbazol-9-yl)phenyl]-1,3-diethyl-1,3-diphenylguanidine

    Full text link

    Multifunctionality of silver closo-boranes

    Get PDF
    Silver compounds share a rich history in technical applications including photography, catalysis, photocatalysis, cloud seeding and as antimicrobial agents. Here we present a class of silver compounds (Ag2B10H10 and Ag2B12H12) that are semiconductors with a bandgap at 2.3?eV in the green visible light spectrum. The silver boranes have extremely high ion conductivity and dynamic-anion facilitated Ag(+) migration is suggested based on the structural model. The ion conductivity is enhanced more than two orders of magnitude at room temperature (up to 3.2?mS?cm(-1)) by substitution with AgI to form new compounds. Furthermore, the closo-boranes show extremely fast silver nano-filament growth when excited by electrons during transmission electron microscope investigations. Ag nano-filaments can also be reabsorbed back into Ag2B12H12. These interesting properties demonstrate the multifunctionality of silver closo-boranes and open up avenues in a wide range of fields including photocatalysis, solid state ionics and nano-wire production

    A multinuclear 1H, 13C and 11B solid-state MAS NMR study of 16- and 18-electron organometallic ruthenium and osmium carborane complexes

    Get PDF
    YesThe first 1H, 13C, 31P and 11B solid state MAS NMR studies of electron- deficient carborane-containing ruthenium and osmium complexes [Ru/Os(p-cym)(1,2-dicarba-closo-dodecaborane-1,2- dithiolate)] are reported. The MAS NMR data from these 16-electron complexes are compared to those of free carborane-ligand and an 18-electron triphenylphosphine ruthenium adduct, and reveal clear spectral differences between 16- and 18-electron organometallic carborane systems in the solid state.We thank the Swiss National Science Foundation (grant no. PA00P2-145308 to NPEB), the ERC (grant no. 247450 to PJS), EPSRC (grant no. EP/F034210/1) and EC COST Action CM1105 for support. JVH thanks EPSRC and the University of Warwick for partial funding of the solid state NMR infrastructure at Warwick, and acknowledges additional support obtained through Birmingham Science City: Innovative Uses for Advanced Materials in the Modern World (West Midlands Centre for Advanced Materials Project 2), with support from Advantage West Midlands (AWM) and partial funding by the European Regional Development Fund (ERDF)

    Morpholine-4-carboxamidinium ethyl carbonate

    No full text

    Piperidine-1-carboxamidinium ethyl carbonate

    No full text
    • …
    corecore