1,642 research outputs found

    Simulation of tsunamis induced by volcanic activity in the Gulf of Naples (Italy)

    Get PDF
    International audienceThe paper explores the potential of tsunami generation by pyroclastic flows travelling down the flank of the volcano Vesuvius that is found south of Naples in Italy. The eruption history of Vesuvius shows that it is characterised by large explosive eruptions of plinian or subplinian type during which large volume of pyroclastic flows can be produced. The most remarkable examples of such eruptions occurred in 79 AD and in 1631 and were catastrophic. Presently Vesuvius is in a repose time that, according to volcanologists, could be interrupted by a large eruption, and consequently proper plans of preparedness and emergency management have been devised by civil authorities based on a scenario envisaging a large eruption. Recently, numerical models of magma ascent and of eruptive column formation and collapse have been published for the Vesuvius volcano, and propagation of pyroclastic flows down the slope of the volcanic edifice up to the close shoreline have been computed. These flows can reach the sea in the Gulf of Naples: the denser slow part will enter the waters, while the lighter and faster part of the flow can travel on the water surface exerting a pressure on it. This paper studies the tsunami produced by the pressure pulse associated with the transit of the low-density phase of the pyroclastic flow on the sea surface by means of numerical simulations. The study is divided into two parts. First the hydrodynamic characteristics of the Gulf of Naples as regards the propagation of long waves are analysed by studying the waves radiating from a source that is a static initial depression of the sea level localised within the gulf. Then the tsunami produced by a pressure pulse moving from the Vesuvius toward the open sea is simulated: the forcing pulse features are derived from the recent studies on Vesuvian pyroclastic flows in the literature. The tsunami resulting from the computations is a perturbation involving the whole Gulf of Naples, but it is negligible outside, and persists within the gulf long after the transit of the excitation pulse. The size of the tsunami is modest. The largest calculated oscillations are found along the innermost coasts of the gulf at Naples and at Castellammare. The main conclusion of the study is that the light component of the pyroclastic flows produced by future large eruptions of Vesuvius are not expected to set up catastrophic tsunamis

    Ideal relativistic fluid limit for a medium with polarization

    Get PDF
    FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQWe use Lagrangian effective field theory techniques to construct the equations of motion for an ideal relativistic fluid of which the constituent degrees of freedom have microscopic polarization. We discuss the meaning of such a system and argue that it is the first term in the Effective Field Theory ( EFT) appropriate for describing polarization observables in heavy ion collisions, such as final-state particle polarization and chiral magnetic and vortaic effects. We show that this system will generally require nondissipative dynamics at higher order in the gradient than second order, leading to potential stability issues known with such systems. We comment on the significance of this in the light of conjectured lower limits on viscosity.96519FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ2014/13120-7147435/2014-5301996/2014-8G.T. acknowledges support from FAPESP processo Grant No. 2014/13120-7 and CNPQ Bolsa de produtividade 301996/2014-8. L.T. was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award No. DE-SC0004286 and Polish National Science Center Grant No. DEC-2012/06/A/ST2/00390. D.M. would like to acknowledge CNPQ graduate Fellowship No. 147435/2014-5. Parts of this work were done when L.T. visited Campinas on FAEPEX Fellowship No. 2020/16 as well as when G.T. participated in the INT workshop "Exploring the QCD Phase Diagram through Energy Scans." We thank FAEPEX and the INT organizers for the support provided. We wish to thank Miklos Gyulassy for enlightening discussions that posed the conceptual challenges that eventually led to this work and Mike Lisa for showing us experimental literature and useful discussions

    Scenario-based assessment of buildings' damage and population exposure due to earthquake-induced tsunamis for the town of Alexandria, Egypt

    Get PDF
    Abstract. Alexandria is the second biggest city in Egypt with regards to population, is a key economic area in northern Africa and has very important tourist activity. Historical records indicate that it was severely affected by a number of tsunami events. In this work we assess the tsunami hazard by running numerical simulations of tsunami impact in Alexandria through the worst-case credible tsunami scenario analysis (WCTSA). We identify three main seismic sources: the western Hellenic Arc (WHA – reference event AD 365, Mw = 8.5), the eastern Hellenic Arc (EHA – reference event 1303, Mw = 8.0) and the Cyprus Arc (CA – hypothetical scenario earthquake with Mw = 8.0), inferred from the tectonic setting and from historical tsunami catalogues. All numerical simulations are carried out in two sea level conditions (mean sea level and maximum high-tide sea level) by means of the code UBO-TSUFD, developed and maintained by the Tsunami Research Team of the University of Bologna. Relevant tsunami metrics are computed for each scenario and then used to build aggregated fields such as the maximum flood depth and the maximum inundation area. We find that the case that produces the most relevant flooding in Alexandria is the EHA scenario, with wave heights up to 4 m. The aggregate fields are used for a building vulnerability assessment according to a methodology developed in the framework of the EU-FP6 project SCHEMA and further refined in this study, based on the adoption of a suitable building damage matrix and on water inundation depth. It is found that in the districts of El Dekhila and Al Amriyah, to the south-west of the port of Dekhila, over 12 000 (13 400 in the case of maximum high tide) buildings could be affected and hundreds of them could sustain damaging consequences, ranging from critical damage to total collapse. It is also found that in the same districts tsunami inundation covers an area of about 15 km2, resulting in more than 150 000 (165 000 in the case of maximum high tide) residents being exposed

    Tsunami generation in Stromboli island and impact on the south-east Tyrrhenian coasts

    Get PDF
    Stromboli is one of the most active volcanoes in the Aeolian island arc in south Tyrrhenian sea, Italy. In the last 100 years the most relevant volcanic eruptions have beenaccompanied by local tsunamis, that have caused damage and casualties. In some cases the direct mechanism of local tsunami generation is clear, i.e. pyroclastic flows entering the sea. In some others it is uncertain and some speculation concerning the collapse of the eruptive column on the sea surface or the failure of some underwater mass can be made. But the ordinary activity is unlikely to generate large regional tsunamis. These can be produced by the lateral collapse of the volcanic cone that geomorphological and volcanological&nbsp; investigations have proven to have occurred repeatedly in the recent history of the volcano, with return period in the order of some thousands of years. The last episode is dated to less than 5 ka BP, and left the Sciara del Fuoco scar on the north-west flank of Stromboli.</p> <p style='line-height: 20px;'>Based on previous studies, the possible collapse of the nortwestern sector of Stromboli and the consequent generation and propagation of a tsunami are explored. The impact on Stromboli and on the other islands of the Aeolian archipelago is estimated, as well as the impact on the coast of Sicily and the Tyrrhenian coasts of Calabria. The simulation is carried out by means of a double model: a Lagrangian block model to compute the motion of the collapsing mass, and a finite-element hydrodynamic model to compute the evolution of the tsunami. Two distinct tsunami simulations are carried out, one on a very fine grid around the source region to evaluate the tsunami near Stromboli, and one utilising a coarser grid covering the whole south-east Tyrrhenian sea to compute the tsunami propagation toward Sicily and Calabria. It is found that a huge-volume collapse of the north-western flank of the Stromboli cone is capable of producing a regional tsunami which is catastrophic at the source and devastating on long stretches of Tyrrhenian coasts, but particularly in the neighbouring islands of Panarea and Salina, and along the Calabria coasts around Capo Vaticano

    Tsunami hazard for the city of Catania, eastern Sicily, Italy, assessed by means of Worst-case Credible Tsunami Scenario Analysis (WCTSA)

    Get PDF
    Eastern Sicily is one of the coastal areas most exposed to earthquakes and tsunamis in Italy. The city of Catania that developed between the eastern base of Etna volcano and the Ionian Sea is, together with the neighbour coastal belt, under the strong menace of tsunamis. This paper addresses the estimation of the tsunami hazard for the city of Catania by using the technique of the Worst-case Credible Tsunami Scenario Analysis (WCTSA) and is focused on a target area including the Catania harbour and the beach called La Plaia where many human activities develop and many important structures are present. The aim of the work is to provide a detailed tsunami hazard analysis, firstly by building scenarios that are proposed on the basis of tectonic considerations and of the largest historical events that hit the city in the past, and then by combining all the information deriving from single scenarios into a unique aggregated scenario that can be viewed as the &lt;i&gt;worst virtual scenario&lt;/i&gt;. Scenarios have been calculated by means of numerical simulations on computational grids of different resolutions, passing from 3 km on a regional scale to 40 m in the target area. La Plaia beach results to be the area most exposed to tsunami inundation, with inland penetration up to hundreds of meters. The harbour turns out to be more exposed to tsunami waves with low frequencies: in particular, it is found that the major contribution to the hazard in the harbour is due to a tsunami from a remote source, which propagates with much longer periods than tsunamis from local sources. This work has been performed in the framework of the EU-funded project SCHEMA

    Chemical and physical characterization of thermal aggregation of model proteins modulated by zinc (II) and copper (II) ions.

    Get PDF
    BACKGROUND: Metal ions are implicated in protein aggregation processes of several neurodegenerative pathologies, where the protein deposition occurs, and in the biotechnology field like the food technology where many processes in food manufacturing are based on thermal treatments. OBJECTIVE: The influence of Cu2+ or Zn2+ ions on the thermal aggregation process of Bovine beta-lactoglobulin (BLG) and Bovine Serum Albumin (BSA), two protein models, was studied with the aim of delineating the role of these ions in the protein aggregation kinetics and to clarify the related molecular mechanisms. METHODS: The protein structure changes were monitored by Raman spectroscopy, whereas the aggregate growth was followed by Dynamic Light Scattering measurements. RESULTS: Both metal ions are able to favour the BLG aggregation, whereas only Zn2+ ions have a promoter effect on the thermal aggregation of BSA. The reason of this different behaviour is that the BLG aggregation evolution is manly affected by the redistribution of charges, whereas that of BSA by the metal coordination binding which depends on metal. CONCLUSIONS: Raman spectroscopy, combined with dynamic light scattering experiments, was very useful in identifying the role played by Cu2+ and Zn2+ on the aggregation pathways of BLG and BSA. The results provide evidence for the role of histidine residues both in the redistribution of charges and in the two modes of metal binding that take place in BLG- and BSA-containing systems, respectively
    • 

    corecore