71 research outputs found

    Service Knowledge Capture and Reuse

    Get PDF
    The keynote will start with the need for service knowledge capture and reuse for industrial product-service systems. A novel approach to capture the service damage knowledge about individual component will be presented with experimental results. The technique uses active thermography and image processing approaches for the assessment. The paper will also give an overview of other non-destructive inspection techniques for service damage assessment. A robotic system will be described to automate the damage image capture. The keynote will then propose ways to reuse the knowledge to predict remaining life of the component and feedback to design and manufacturing

    Effect of extrusion and compression moulding on the thermal properties of nylon-6/silica aerogel composites

    Get PDF
    The article presents the effect of a lower extrusion speed and compression moulding processes on the thermal properties of polyamide 6 (PA-6)/aerogel composite. Scanning electron and optical microscope images showed that although most of the aerogel was destroyed during extrusion at 65 r/min, extrusion at 5 r/min showed a better retention of the aerogel structure. However, when subjected to moulding in a compression press, both composites extruded at different speeds suffered significant damage. Nevertheless, the extruded samples did show a lower thermal conductivity compared to the virgin polymer. Further, it was observed that the sample extruded at 5 r/min had a lower damage coefficient value with an overall loss of around 33% to the aerogel structure when compared to the material extruded at 65 r/min, which endured a structural loss of 41% to the aerogel in it

    Inspection of electronic component using pulsed thermography

    Get PDF
    Counterfeit electronic components (CEC) are of great concern to governments and industry globally as they could lead to systems and mission failure, malfunctioning of safety critical systems, and reduced reliability of high-hazard assets. Depending on the cost of CEC going into the production line, some industries might look to have some sort of inspection capability in-house to screen critical components before they go to assembly. Although advanced counterfeit inspection methods have been developed for a variety of components, they generally exhibit a combination of disadvantages such as destructive, low throughput, high unit cost, or inaccessible to unskilled operator. This paper investigates the potential of pulsed thermography on detection of CEC in a fast and non-destructive manner. The second derivative of post-heat thermal response is used to construct a fingerprint to differentiate genuine and counterfeit components. Results successfully demonstrate the potential of the proposed solution

    Detectability evaluation of attributes anomaly for electronic components using pulsed thermography

    Get PDF
    Counterfeit Electronic Components (CECs) pose a serious threat to all intellectual properties and bring fatal failure to the key industrial systems. This paper initiates the exploration of the prospect of CEC detection using pulsed thermography (PT) by proposing a detectability evaluation method for material and structural anomalies in CECs. Firstly, a numerical Finite Element Modelling (FEM) simulation approach of CEC detection using PT was established to predict the thermal response of electronic components under the heat excitation. Then, by experimental validation, FEM simulates multiple models with attribute deviations in mould compound conductivity, mould compound volumetric heat capacity and die size respectively considering experimental noise. Secondly, based on principal components analysis (PCA), the gradients of the 1st and 2nd principal components are extracted and identified as two promising classification features of distinguishing the deviation models. Thirdly, a supervised machine learning-based method was applied to classify the features to identify the range of detectability. By defining the 90% of classification accuracy as the detectable threshold, the detectability ranges of deviation in three attributes have been quantitively evaluated respectively. The promising results suggest that PT can act as a concise, operable and cost-efficient tool for CECs screening which has the potential to be embedded in the initial large scale screening stage for anti-counterfeit

    A novel inspection technique for electronic components using thermography (NITECT)

    Get PDF
    Unverified or counterfeited electronic components pose a big threat globally because they could lead to malfunction of safety-critical systems and reduced reliability of high-hazard assets. The current inspection techniques are either expensive or slow, which becomes the bottleneck of large volume inspection. As a complement of the existing inspection capabilities, a pulsed thermography-based screening technique is proposed in this paper using a digital twin methodology. A FEM-based simulation unit is initially developed to simulate the internal structure of electronic components with deviations of multiple physical properties, informed by X-ray data, along with its thermal behaviour under exposure to instantaneous heat. A dedicated physical inspection unit is then integrated to verify the simulation unit and further improve the simulation by taking account of various uncertainties caused by equipment and samples. Principle component analysis is used for feature extraction, and then a set of machine learning-based classifiers are employed for quantitative classification. Evaluation results of 17 chips from different sources successfully demonstrate the effectiveness of the proposed techniqu

    A fiber-guided motorised rotation laser scanning thermography technique for impact damage crack inspection in composites

    Get PDF
    Laser Thermography manifests superior sensitivity and compatibility to detect cracks and small subsurface defects. However, the existing related systems have limitations on either inspection efficiency or unknown directional cracks due to the utilization of stationary heat sources. This article reports a Fiber-guided Motorised Rotation Laser-line Scanning Thermography (FMRLST) system aiming to rapidly inspect cracks of impact damage with unknown direction in composite laminates. An optical head with fibre delivery integrated with a rotation motor is designed and developed to generate novel scanning heating in a circumferential rotation manner. A FEM model is first proposed to simulate the principle of FMRLST testing and produce thermograms for the development of post-processing methods. A damage enhancement method based on Curvelet Transform is developed to enhance the visualization of thermal features of cracks, and purify the resulting image by suppressing the laser-line heating pattern and cancelling noise. The validation on three composite specimens with different levels of impact damage suggests the developed FMRLST system can extract unknown impact surface cracks efficiently. The remarkable sensitivity and flexibility of FMRLST to arbitrary cracks, along with the miniaturized probe-like inspection unit, present its potential in on-site thermographic inspection, and its design is promising to push the LST towards

    Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction

    Get PDF
    Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are limited. To identify novel therapeutic strategies, we studied protective factors for DN using proteomics on glomeruli from individuals with extreme duration of diabetes (≥ 50 years) without DN and those with histologic signs of DN. Enzymes in the glycolytic, sorbitol, methylglyoxal and mitochondrial pathways were elevated in individuals without DN. In particular, pyruvate kinase M2 (PKM2) expression and activity were upregulated. Mechanistically, we showed that hyperglycemia and diabetes decreased PKM2 tetramer formation and activity by sulfenylation in mouse glomeruli and cultured podocytes. Pkm-knockdown immortalized mouse podocytes had higher levels of toxic glucose metabolites, mitochondrial dysfunction and apoptosis. Podocyte-specific Pkm2-knockout (KO) mice with diabetes developed worse albuminuria and glomerular pathology. Conversely, we found that pharmacological activation of PKM2 by a small-molecule PKM2 activator, TEPP-46, reversed hyperglycemia-induced elevation in toxic glucose metabolites and mitochondrial dysfunction, partially by increasing glycolytic flux and PGC-1α mRNA in cultured podocytes. In intervention studies using DBA2/J and Nos3 (eNos) KO mouse models of diabetes, TEPP-46 treatment reversed metabolic abnormalities, mitochondrial dysfunction and kidney pathology. Thus, PKM2 activation may protect against DN by increasing glucose metabolic flux, inhibiting the production of toxic glucose metabolites and inducing mitochondrial biogenesis to restore mitochondrial function

    Convergent evidence that ZNF804A is a regulator of pre-messenger RNA processing and gene expression

    Get PDF
    Genome-wide association studies have linked common variation in ZNF804A with an increased risk of schizophrenia. However, little is known about the biology of ZNF804A and its role in schizophrenia. Here, we investigate the function of ZNF804A using a variety of complementary molecular techniques. We show that ZNF804A is a nuclear protein that interacts with neuronal RNA splicing factors and RNA-binding proteins including RBFOX1, which is also associated with schizophrenia, CELF3/4, components of the ubiquitin-proteasome system and the ZNF804A paralog, GPATCH8. GPATCH8 also interacts with splicing factors and is localized to nuclear speckles indicative of a role in pre-messenger RNA (mRNA) processing. Sequence analysis showed that GPATCH8 contains ultraconserved, alternatively spliced poison exons that are also regulated by RBFOX proteins. ZNF804A knockdown in SH-SY5Y cells resulted in robust changes in gene expression and pre-mRNA splicing converging on pathways associated with nervous system development, synaptic contact, and cell adhesion. We observed enrichment (P = 1.66 × 10–9) for differentially spliced genes in ZNF804A-depleted cells among genes that contain RBFOX-dependent alternatively spliced exons. Differentially spliced genes in ZNF804A-depleted cells were also enriched for genes harboring de novo loss of function mutations in autism spectrum disorder (P = 6.25 × 10–7, enrichment 2.16) and common variant alleles associated with schizophrenia (P = .014), bipolar disorder and schizophrenia (P = .003), and autism spectrum disorder (P = .005). These data suggest that ZNF804A and its paralogs may interact with neuronal-splicing factors and RNA-binding proteins to regulate the expression of a subset of synaptic and neurodevelopmental genes

    The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes

    Get PDF
    Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the comple

    Use of imaging biomarkers to assess perfusion and glucose metabolism in the skeletal muscle of dystrophic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate the use of imaging biomarkers (muscle perfusion and metabolism) in a longitudinal assessment of skeletal muscle degeneration/regeneration in two murine models of muscular dystrophy.</p> <p>Methods</p> <p>Wild-type (w.t.) and dystrophic mice (weakly-affected mdx mice that are characterized by a point mutation in dystrophin; severely-affected mdx:utrn-/- (udx) mice that lack functional dystrophin and are null for utrophin) were exercised three times a week for 30 minutes. To follow the progression of DMD, accumulation of <sup>18 </sup>F-FDG, a measure of glucose metabolism, in both wild-type and affected mice was measured with a small animal PET scanner (GE eXplore Vista). To assess changes in blood flow and blood volume in the hind limb skeletal muscle, mice were injected intravenously with a CT contrast agent, and imaged with a small animal CT scanner (GE eXplore Ultra).</p> <p>Results</p> <p>In hind limb skeletal muscle of both weakly-affected mdx mice and in severely-affected udx mice, we demonstrate an early, transient increase in both <sup>18</sup>F-FDG uptake, and in blood flow and blood volume. Histological analysis of H&E-stained tissue collected from parallel littermates demonstrates the presence of both inflammatory infiltrate and centrally-located nuclei, a classic hallmark of myofibrillar regeneration. In both groups of affected mice, the early transient response was succeeded by a progressive decline in muscle perfusion and metabolism; this was also evidenced histologically.</p> <p>Conclusions</p> <p>The present study demonstrates the utility of non-invasive imaging biomarkers in characterizing muscle degeneration/regeneration in murine models of DMD. These techniques may now provide a promising alternative for assessing both disease progression and the efficacy of new therapeutic treatments in patients.</p
    • …
    corecore