30 research outputs found

    Imaging Genetic Based Mediation Analysis for Human Cognition

    Get PDF
    The brain connectome maps the structural and functional connectivity that forms an important neurobiological basis for the analysis of human cognitive traits while the genetic predisposition and our cognition ability are frequently found in close association. The issue of how genetic architecture and brain connectome causally affect human behaviors remains unknown. To seek for the potential causal relationship, in this paper, we carried out the causal pathway analysis from single nucleotide polymorphism (SNP) data to four common human cognitive traits, mediated by the brain connectome. Specifically, we selected 942 SNPs that are significantly associated with the brain connectome, and then estimated the direct and indirect effect on the human traits for each SNP. We found out that a majority of the selected SNPs have significant direct effects on human traits and discussed the trait-related brain regions and their implications

    Multiscale modelling of vascular tumour growth in 3D: the roles of domain size & boundary condition

    Get PDF
    We investigate a three-dimensional multiscale model of vascular tumour growth, which couples blood flow, angiogenesis, vascular remodelling, nutrient/growth factor transport, movement of, and interactions between, normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. In particular, we determine how the domain size, aspect ratio and initial vascular network influence the tumour's growth dynamics and its long-time composition. We establish whether it is possible to extrapolate simulation results obtained for small domains to larger ones, by constructing a large simulation domain from a number of identical subdomains, each subsystem initially comprising two parallel parent vessels, with associated cells and diffusible substances. We find that the subsystem is not representative of the full domain and conclude that, for this initial vessel geometry, interactions between adjacent subsystems contribute to the overall growth dynamics. We then show that extrapolation of results from a small subdomain to a larger domain can only be made if the subdomain is sufficiently large and is initialised with a sufficiently complex vascular network. Motivated by these results, we perform simulations to investigate the tumour's response to therapy and show that the probability of tumour elimination in a larger domain can be extrapolated from simulation results on a smaller domain. Finally, we demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour

    Mechanical and Static Stab Resistant Properties of Hybrid-Fabric Fibrous Planks: Manufacturing Process of Nonwoven Fabrics Made of Recycled Fibers

    No full text
    With the development of technology, fibers and textiles are no longer exclusive for the use of clothing and decoration. Protective products made of high-strength and high-modulus fibers have been commonly used in different fields. When exceeding the service life, the protective products also need to be replaced. This study proposes a highly efficient recycling and manufacturing design to create more added values for the waste materials. With a premise of minimized damage to fibers, the recycled selvage made of high strength PET fibers are reclaimed to yield high performance staple fibers at a low production cost. A large amount of recycled fibers are made into matrices with an attempt to decrease the consumption of new materials, while the combination of diverse plain woven fabrics reinforces hybrid-fabric fibrous planks. First, with the aid of machines, recycled high strength PET fibers are processed into staple fibers. Using a nonwoven process, low melting point polyester (LMPET) fibers and PET staple fibers are made into PET matrices. Next, the matrices and different woven fabrics are combined in order to form hybrid-fabric fibrous planks. The test results indicate that both of the PET matrices and fibrous planks have good mechanical properties. In particular, the fibrous planks yield diverse stab resistances from nonwoven and woven fabrics, and thus have greater stab performance

    Exploration of Large-Scale Application of Efficient and Clean Utilization of Low-Grade Bauxite

    No full text
    In recent years, the rapid development of the domestic alumina industry has greatly accelerated the consumption of high-alumina–silica-ratio bauxite resources in China. The development of an efficient and clean utilization technology applicable to low-grade bauxite in China is not only a requirement for resource and environmental protection, but also a powerful guarantee to maintain the sustainable development of China’s aluminum industry. Based on this, the authors’ team proposed a new process for the treatment of low-grade bauxite ore via a calcification–carbonization method from the perspective of equilibrium solid-phase reconstruction and achieved the first industrial-scale trial run on the basis of existing laboratory research. The results show that the mass fraction of Na2O in bauxite residue can be reduced to 0.95% in the treatment of typical diaspore bauxite, the A/S in the bauxite residue can be reduced to 0.85 after two-time carbonization–alumina dissolution, and the actual alumina dissolution rate can reach 81.32%. The relevant results verified the feasibility and advantages of the calcification–carbonization method in industrial production

    A chlorination roasting process to extract rubidium from distinctive kaolin ore with alternative chlorinating reagent

    No full text
    A chlorination roasting process was proposed to recover rubidium from the distinctive rubidium-containing kaolin ore. The rubidium ions which existed in the alumina octahedron of the phyllosilicates structure could be extracted effectively by using CaCl2 as chlorinating reagent due to formation of Ca(Al2Si2O8) phase in the chlorination process of kaolin ore, and the maximum extraction yield reached 96.95%. Additionally, the kinetics results of chlorination roasting of the kaolin ore showed that the extraction rate of rubidium was controlled by the chemical reaction, and the activation energy was found to be 40.13 kJ mol(-1) in the roasting temperature range of this study. (C) 2016 Elsevier B.V. All rights reserved.</p
    corecore