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The brain connectome maps the structural and functional connectivity that forms an

important neurobiological basis for the analysis of human cognitive traits while the genetic

predisposition and our cognition ability are frequently found in close association. The

issue of how genetic architecture and brain connectome causally affect human behaviors

remains unknown. To seek for the potential causal relationship, in this paper, we carried

out the causal pathway analysis from single nucleotide polymorphism (SNP) data to four

common human cognitive traits, mediated by the brain connectome. Specifically, we

selected 942 SNPs that are significantly associated with the brain connectome, and then

estimated the direct and indirect effect on the human traits for each SNP. We found out

that a majority of the selected SNPs have significant direct effects on human traits and

discussed the trait-related brain regions and their implications.
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1. INTRODUCTION

Advances in genetics help identify the genetic contribution to human cognition and understand
the influence of specific genetic variants on cognition. The analysis of genetic variations, e.g.,
single nucleotide polymorphisms (SNPs), is to thoroughly understand phenotypic characteristics
and the genetic mechanism of both normal and disordered brain function and behavior (Shen
and Thompson, 2019). However, as the cognitive phenotypes are usually self-reported and not
explicit, potentially weakening the genetic effect (Fossella et al., 2002; Goldberg and Weinberger,
2004; Green et al., 2008), the mechanisms regarding how genetic variations affect such cognitive
phenotypes are not clear yet (Bi et al., 2017).

To bridge the gap between genetic variations and cognitive phenotypes, neuroimaging genetics
has attracted dramatic attention (Elliott et al., 2018). In particular, with the rapid development
of brain imaging acquisition techniques, a number of large-scale imaging genetic databases have
been established, including the Human Connectome project (HCP) study (Van Essen et al., 2013),
the UK biobank (UKbb) study (Miller et al., 2016), and the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study (Mueller et al., 2005), among many others. By utilizing the multi-scale
data available in these imaging genetic databases, genetic variations are integrated with multimodal
brain imaging, coupled with clinical and environmental factors to investigate how genes are
expressed through the neuroimaging based measures and identify genetic contributors to brain
activities and structures associated with cognition or neurological disorders (Nathoo et al., 2019).

Recently, some neuroimaging genetics studies have been witnessed focusing on the intersection
of cognitive neuroscience and behavioral genetics (Green et al., 2008, 2013; Bi et al., 2017; Luo
et al., 2018), in which the goal is to specify the pathway that genetic effects on cognitive phenotypes
are mediated by specific brain functions (Green et al., 2013). To achieve the goal, some statistical
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analysis approaches have been developed, typically consisting
of two key components: (i) genome-wide association studies
(GWAS) to identify genetic variants that have specific effects
on specific brain areas; and (ii) mediation analysis to test if
those brain areas produce a cognitive function (Green et al.,
2013). Guen et al. (2018) explored the effect of genes on
cognitive ability and found that brain activation patterns for
cognitive traits can be genetic and also some regions’ activation
in the brain and cognitive abilities share the same genetic
characteristics. He et al. (2021) proposed the possible linkage
and relationship between genetic variants, brain morphometry,
and working memory performance and found an SNP which
might be influential on working memory. However, few works
have been conducted to test the neuroimaging mediation
in terms of the brain connectome although the study of
brain networks becomes increasingly significant (Fornito et al.,
2015; Lynn and Bassett, 2019). The main challenge comes
from the construction of efficient representations for the
brain connectome (Park and Friston, 2013). Typically, the
functional connectivity can be measured from the statistical
dependencies between physiological measures of brain activity
(Van Den Heuvel and Pol, 2010) while the structural connectivity
can bemeasured through diffusion tractography (Kazumata et al.,
2019). However, the constructed connectivity graph is critically
sensitive to the choice of brain atlas, including the number of
region of interest (ROI) and their definitions (Balsters et al.,
2016). Furthermore, unlike the voxel-wised or region-based
neuroimaging phenotypes, it is difficult to conduct the GWAS
for brain connectivity graph-based phenotypes to identify the
corresponding potential genetic variants (Nathoo et al., 2019).

To address these issues, in this paper, we develop an imaging
genetic-based mediation analysis framework to investigate the
genetic effects on human cognition phenotypes mediated by an
efficient representation of the brain connectome. Specifically, we
focus on the HCP neuroimaging genetic study which facilitated
many advancements in the field of brain networks (Craddock
et al., 2015). To build up the representation of the brain
connectome, an unsupervised statistical learning approach is
proposed based on the tractography results extracted from the
diffusion magnetic resonance imaging (MRI) data. GWAS are
conducted for each brain connectome phenotype to detect the
significant SNP-connectome pairs. For selected causal SNP, a
regression analysis is conducted to test the mediation of the
tied brain connectome via checking if it significantly affects the
cognitive phenotypes.

The proposed method brings three contributions. First,
a data-driven based representation of the brain connectome
is developed, which possesses potential power in human
cognition prediction. Second, the efficient representation can
help detect genetic signals that are neglected. Third, the proposed
framework can also be applied to other neurological disorders
related to neuroimaging genetic databases, e.g., ADNI study,
to understand the corresponding gene-connectome-cognition
pathway. In conclusion, we provide a framework to study the
casual pathway from SNPs data to cognitive traits, with the
brain connectome as the mediator. Our result will identify
significant mediation pathways, which can shed light on future

investigation of SNPs→connectome→cognition mechanics. We
will suggest SNP candidates that can affect human cognitive
ability through altering brain structure, which will benefit further
in future studies. The structure of the paper is as follows. In
Section 2, we will describe the construction of the human brain
connectome and the method used for GWAS and the linear
modeling of effects. In Section 3, we will describe the analysis
performed on the MR dataset and genetic dataset. In Section
4, the results derived from the above analysis will be discussed.
Further discussions on the results and conclusion will be included
in Section 5.

2. METHOD

In this section, we initially develop the human brain connectome
based on fiber clustering on the diffusion MRI image data. After
developing the brain connectome, we perform GWAS based
on the structure connectivity representation to first reduce the
dimension of the genetic data and then detect a significant
relationship between SNPs and brain connectome. After the
selection of the significant SNPs with their paired regions, we try
to explore the relationship between human cognitive traits and
SNPs mediated by the brain connectome.

2.1. Image Based Human Brain
Connectome
2.1.1. Preprocessing
Many studies have examined parcellation in a supervised way
with an existing atlas (Guevara et al., 2012; Jin et al., 2014; Gupta
et al., 2017). In Liu et al. (2021), an unsupervised population-
level approach is developed. Borrowing from this idea, we collect
all the fibers together as a large fiber set after fiber tracking,
denoted as F . Let F = {fij, k = 1, . . . ,mi, i = 1, . . . , n}, where
fij denotes the j-th fiber of the i-th individual,mi denotes the total
number of fibers in i-th subject, and n denotes the number of
subjects. Based on the length of each individual fiber, the number
of points representation within a fiber varies from 4 to 60. Most
clustering methods thus involve up/down-sampling of the fibers
to uniform the number of points (Guevara et al., 2012). For
simplicity, we take two end points {aij} and {bij} of each fiber fij
as the representation. More specifically, {aij} and {bij} are the 3D
coordinates of the two end points, respectively, which are stacked
into a single 6 × 1 vector (aTij , b

T
ij )

T , with the order determined

by the value of their coordinates. The fibers of the i-th subject
{fij, j = 1, . . . ,mi} is then represented as a matrix ci with size of
6×mi. Themi represents the number of all the fibers in ith subject,
which does not have to be the same across all subjects. The
individual cis are then collected by simply horizontally stacking
the matrices cis together as C = (c1, . . . , cn) with the dimension
of 6×

∑n
i=1 mi, which is the reduced representation of F .

2.1.2. Fiber Clustering
At this end, all the fibers are represented in C. Since the original
K-means algorithm has a high computational burden, we adopt
a mini-batch K-means algorithm (Cho and An, 2014). In each
iteration, a random set of fibers were selected to update the
centroids, until we provide a stable partition on C as AK =
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{A
(1)
K , . . . ,A

(K)
K }, where K is the number of cluster and each A

(k)
K

interpreted as the k-th cluster. In the brain connectome studies,
the parcellation number K varies from two to sometimes tens of
thousands. Currently, the choice of exact cluster number remains
an open problem (Eickhoff et al., 2015). A discussion about
the choice of cluster number was found in Liu et al. (2021),
which provides a guideline to reduce the prediction error on
some specific human traits while preserving stable connectivity
features.

2.1.3. Brain Connectome
After the fiber clusters are acquired, a subject-wise connectome is
defined based on the distribution of the fibers across population
clusters. Specifically, the connectome for the i-th subject is
defined as a K dimension vector ωi, where K is the number of
clusters. For k = 1, . . . ,K, defineωik as the proportion of number
of the i-th subject’s fibers within cluster k to the total number of
fibers of the i-th subject,

ωik

=
Number of fibers of the i-th subject within the population cluster k

Total number of fibers of the i-th subject
.

The connectome of subject i is then defined as ωi =

{ωi1, . . . ,ωiK}. One of the interpretations about the connectome
with K clusters is that they are distinct groups of associations
pathways on the granularity level induced in our brain. With
this interpretation, ωi seeks to comprehensively capture the
proportion of these individual associations in i-th subject’s brain.
In addition, it is important to notice that a larger ωik can have
two non-exclusive implications: (i) i-th subject has a denser axons
presence in cluster k compared with other clusters; and (ii) i-th
subject has a bigger volume of the relevant pair of gray matter
areas that cover more fibers. This differs from our connectome
method with existing functional connection based methods.

2.2. GWAS Based on Connectome
Representation
First, the potential causal SNPs are identified such that the
dimension of the genetic data can be reduced from a very large
scale to a moderate scale and then the significant connectivity-
SNP pairs are detected. Let G be the set of NG single nucleotide
polymorphisms (SNPs). For the i-th subject, let x

g
i take the values

of 0 (no minor allele), 1 (one minor allele), and 2 (two minor
alleles), indicating the genetic data at the g-th locus in G, g =

1, . . . ,NG, and Zi = (zi1, . . . , zip)
⊤ be a p × 1 vector including

the clinical confounders, e.g., age and gender. To adjust for
population structures, we also included the scores for the top 2
principal components as the confounders.

Based on image-based human brain connectome, assume
that K brain parcellations are derived from the diffusion MRI
scans and ωi = (ωi1, . . . ,ωiK)

⊤ is the structure connectivity
representation for the i-th subject, i.e., a K × 1 vector containing
the individual cluster weights satisfying ωik ≥ 0 and

∑
k ωik = 1.

The next step is to establish a linear relationship between each

SNP x
g
i and connectome ωik.

ωik = β0 + x
g
i βk + Ziγk + ǫik, (1)

where i = 1, · · · , n, k = 1, · · · ,K, and g = 1, · · · ,NG. Zi denotes
confounders, β0 is intercept and βk, γk are the coefficients in the
above equation. ǫik is the error and we assume that

ǫik ∼ N (0, σ 2
1 ),

where ǫiks are iid from normal distribution with constant
variance σ 2

1 . We have a huge number of genes out of which
a small number of genes might have effect on ωik hence in
the model not all SNPs x

g
i have significant effect on ωik. To

have an initial screening, we can test the hypothesis of H10:
βk = 0 vs. H11: βk 6= 0. By testing the above hypothesis,
we can reduce the number of relevant genes in our model and
hence reduce the dimension by dropping the SNPs where the
p-value is large for the corresponding coefficients. Dimension
reduction by dropping insignificant SNPs can help us increase
the computation efficiency and it also makes the estimates biased
and power gets reduced.

The subjects for which both SNP data and connectome data
are available have been taken into consideration for the analysis.
The estimation of the parameters in regression Equation (1)
was carried out in open-source software PLINK (https://www.
cog-genomics.org/plink) that is the whole genome data analysis
toolset and cluster-wise results were derived containing the
estimates of the parameter βk and its corresponding p-value.
The selection of SNPs was made by testing the hypothesis
mentioned above for parameter in Equation (1) and discarding
those SNPs for which the hypothesis has been accepted. To
identify significant variants, we used false discovery rate (FDR)
control to select potential SNPs from our GWAS results. In this
step, 942 SNPs were selected controlling for an expected FDR of
0.05, and the FDR controls were done for each cluster separately.
Since the SNPs selected in this way can have a correlation with
each other, we also fed our GWAS result into FUMA (Watanabe
et al., 2017a) to identify independent lead SNPs with a measure of
Linkage disequilibrium r2 ≤ 0.1. The top SNPs that appear both
in our FDR-selected SNPs list and in the lead SNPs of FUMA are
reported in Table 1.

2.3. Genome-Wide Linear Modeling of
Effects on Human Traits
In the above subsection, we have selected SNPs based on different
brain regions ωik. By matching the correspondence, we can find
the related brain region with respect to each SNP. For example,
for subject i = 1, suppose we find pairs of ω11 with x11, x12; ω12

with x12, x13; and ω13 with x14, x11, then we can get a conclusion
of the pairs of x11 with ω11,ω13; x12 with ω11,ω12; x13 with ω12;
and x14 with ω13. Thus for each significant SNP x

g
i , g ∈ G∗ and

G∗ ⊂ G, we have its corresponding active connectome label set
Sg ⊂ {1, 2, · · · ,K}, which will be used in the model in the next
step. We adopted the additive minor allele coding to transform
SNPs’ information into discrete covariates. For example, if the
minor allele is G, then the SNP “AA” would be encoded as 0;
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TABLE 1 | Visualization of the four clusters and their corresponding top selected

single nucleotide polymorphisms (SNPs).

Cluster SNP

rs150026771

rs28688016

rs59894521

rs76385638

rs74606713

rs17071497

rs1990985

rs76347993

rs146800096

rs75101611

rs12427819

rs4888388

rs7880476

rs184215464

rs17128467

rs76250915

rs9727148

rs72814539

rs72857725

rs60716510

rs116202570

rs138291276

rs149212121

rs117384094

rs190073949

rs117711504

rs74606713

rs17071497

rs2494732

rs11914543

rs150123805

rs145884040

rs114047728

rs5921578

rs28564459

rs115117038

rs73723635

rs568099192

rs115436176

rs147366834

similarly, SNPs “AG” and “GG” would be coded as 1 and 2. We
used PLINK’s built in functionality to achieve this and carried out
subsequent analysis.

As shown in Figure 1, the brain connectome is considered
a mediator in our model, which transmits the effect of genetic
exposures to human traits (Mackinnon et al., 2007). To complete
the rest of the model, we build a linear relationship between
human traits Y , SNPs X, brain connectome ω, and confounder
Z. Here, the regression is based on paired SNPs x

g
i and brain

connectome ωik. Brain structure-related confounding factors Zi:
gender and age are also assumed to have an direct impact on
human traits.

For the i-th subject, the genome connectome linear model for
human trait is

Yi = η0 + x
g
i η +

∑

k∈Sg

ωikαk + Ziξ + ǫi, (2)

where i = 1, · · · , n, k = 1, · · · ,K, and g ∈ G∗. Zi denotes
confounders and the αk are the coefficients for the active
connectome ωik. η0 is the intercept, η and ξ are the parameters
while ǫi is the error in the above equation with the assumption
that

ǫi ∼ N (0, σ 2
2 ),

where ǫis are iid from a normal distribution with constant
variance σ 2

2 . We estimate the parameters in the above Equation
(2) by minimizing the error sum of squares. In Equation (2), we
test the hypothesis H0 : η = 0 vs. H1 : η 6= 0 to check whether
the parameter η is significant or not and we get the p-value of
the estimate of η. For the significance of indirect pathway, we test

the hypothesis H10 :βk = 0 vs. H11 :βk 6= 0 in Equation (1) and
H20 :αk = 0 vs. H21 :αk 6= 0 in Equation (2). The adjusted p-
values by FDR correction are obtained with the corresponding
point estimates of those parameters.

3. DATA ANALYSIS

In this paper, we used the subjects from the HCP 1200
Subjects Release (S1200) (https://www.humanconnectome.org/
storage/app/media/documentation/s1200/HCP_S1200_Release_
Reference_Manual.pdf) that have all four categories of data
(genetic exposures, diffusion MRI, confounders (gender and
age), and cognitive traits). We used the diffusion MRI to build
up the population-wise brain connectome, and combine it with
the rest of the data to carry out the mediation analysis. The
HCP data contains 298 (149 pairs) of genetically confirmed MZ
(Monozygotic) twins and 188 subjects (94 pairs) of genetically
confirmed DZ (dizygotic) twins. The GWAS studies would drop
one of the MZ twins (Lowe et al., 2009; Parsons et al., 2013)
to prevent such twin structure to increase the type I error rate.
We followed this practice and kept only one randomly chosen
sample from the MZ twins in our dataset. After matching the
ID with imaging data, we finally have 870 individuals (160
DZ individuals, 138 one-of-MZ individuals, and 572 non-twin
individuals) as our total sample size.

3.1. MR Image Dataset
The MR and behavioral dataset used in this paper is from
the HCP 1200 Subjects Release. This dataset is comprised of
1,206 behavioral and MRI data from 1,206 healthy young adult
participants, collected from August 2012 to October 2015. The
MR data includes structural MRI, task functional Magnetic
Resonance Imaging (fMRI), resting state fMRI, and diffusion
Magnetic Resonance Imaging (dMRI). We focused on the
diffusion MRI data and the behavioral data. The behavioral
dataset contains unit tests targeting varies domains related to
human behavior, which relates to alertness, cognition, emotion,
motor, personality, psychiatric, and life function. A majority of
these tests are developed from the (National Institutes of Health)
NIH health toolbox. It can be referred to the release manual
of the S1200 dataset (https://www.humanconnectome.org/study/
hc$p$-young-adult/document/1200-subjects-data-release) and
the NIH toolbox’s website (https://www.healthmeasures.net/
explore-measurement-systems/nih-toolbox) for the details.

3.2. Genetic Dataset
The genetic dataset (https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs001364.v1.p1) from HCP was
used for our analysis. In this paper, some data quality control
operations were performed on the data: (1) subjects where more
than 10% of the genotypes missing were removed; (2) variants
where the missing genotype rate is greater than 10% were also
removed from the data; and (3) variants that failed the Hardy-
Weinberg test at the 10−7 level of significance were also removed.
Finally, a total of 2062590 SNPs are obtained after the quality
control.

Frontiers in Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 824069

https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/study/hc$p$-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hc$p$-young-adult/document/1200-subjects-data-release
https://www.healthmeasures.net/explore-measurement-systems/nih-toolbox
https://www.healthmeasures.net/explore-measurement-systems/nih-toolbox
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001364.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001364.v1.p1
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chen et al. Imaging Genetics Based Mediation Analysis

FIGURE 1 | Casual pathway diagram. Variables are colored black while parameters are colored gray. The independent variable X denotes the genetic exposure. The

dependent variable Y is the cognitive trait. The brain connectomes ω act as the mediator, which transmits the indirect effect of X to Y . Both ω and Y are affected by

confounders Z (e.g., gender, age). Source corresponding to letter Z, top-right: https://unsplash.com/photos/KhStXRVhfog; source corresponding to letter X,

bottom-left: https://pixabay.com/illustrations/dna-biology-medicine-gene-163466/; Source corresponding to letter Y, bottom-right: https://www.pexels.com/photo/

close-up-photo-of-a-child-solving-a-rubik-s-cube-8471912/.

4. RESULTS

4.1. GWAS and Paired Brain Connectome
In our GWAS analysis, a total of 942 SNPs have been
found significantly associated with 5 out of the 10 clusters
(c1,c3,c4,c7,c8). In Table 1, the top SNPs with the lowest p-values
for the major four clusters are shown. The clusters and brain
images belong to a randomly selected subject and the clusters
are colored arbitrarily to help distinguish them. As mentioned
in Section 2.2, these top SNPs are independent of each other at
r2 ≤ 0.1.

In Figure 2, we displayed the 10 clusters of two different
subjects, with each row corresponding to each subject.
The overall regions for those clusters are similar but exist
heterogeneity in different subjects. The different shapes of the
white matter show that the second subject in the second row
has a slightly skinnier skull. Also, the second subject has slightly
less amount of fibers distributed in the second (green) cluster,
compared to other clusters. It is worth noticing that in the
definition of ωik (Section 2.1.3), the denominator is the total
number of fibers of the i-th subject. Thus, we are more interested
in the individual’s distribution of fibers, rather than the absolute
number of fibers.

To help facilitate the understanding of the potential
causal effect of the SNPs, we also used the Functional
Mapping and Annotation (FUMA) for functional annotation
(Watanabe et al., 2017b). We included SNPs in LD with
our SNPs from the 1,000 Genomes reference panel provided

by FUMA (https://fuma.ctglab.nl). We reported the functional
annotation for the top SNPs corresponding to each cluster in
Supplementary Table 1. We also used FUMA’s gene-based test
tool MAGMA (de Leeuw et al., 2015) to identify significant genes.

4.2. Causal Pathway Analysis
Mediating variables are used to transmit the effect of an
independent variable into the response variable. Mediation
analysis is a prominent method to estimate causal relationship,
which is a way to understand the effect of a third variable on the
relationship between two variables. Here, we focus on the effect of
the human brain connectome on the relationship between human
traits and SNPs. With an aim to estimate the average direct effect
(ADE) of SNPs on human cognition ability, we test the hypothesis
H0 : η = 0 vs. H1 : η 6= 0 for the parameter η in the Equation (2).
We consider the p-values and if the p-values are less than 0.05,
then we reject the null hypothesis of no direct effect at 95% level
of confidence. If the null hypothesis is rejected for an SNP, then it
indicates that this SNP has a direct effect on human cognition.

Now, we have selected those SNPs that have a significant
effect on clusters of the human brain connectome (refer to
Equation (1)). Hence, the parameter corresponding to ωik in
Equation (2) together with the parameter βk from Equation (1)
determines the extent of an indirect effect of the gene on human
traits. One way to estimate the significance of the indirect effect is
through testing hypothesis. Testing the hypothesis H20 :αk = 0
vs. H21 :αk 6= 0 and H30 :αkβk = 0 vs. H31 :αkβk 6= 0 would
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FIGURE 2 | Visualization of the fiber clusters of two randomly chosen subjects. Rows 1 and 3 show clusters 1 through 10 for subject S1, while rows 2 and 4 show

clusters 1 through 10 for subject S2. It shows the heterogeneity of their brains and connectomes.

FIGURE 3 | AIE for SNP rs145868200 with significant ADE with p-value<0.05 showing mediation pathways through connectome.

determine the significance of indirect effect of each selected SNP
on human trait.

For our model, we have considered four human traits, i.e.,
oral reading score (ReadEng), list sorting score (ListSort), card
sort score (CardSort), and receptive vocabulary score (PicVocab).
To estimate the average indirect effect (AIE) for SNPs, we
consider the parameter βk estimated from Equation (1) and
α estimated from Equation (2) and add the product of the
coefficients (

∑
k∈Sg αkβk) to get an overall indirect effect. For

each of the four traits, we examined the effects of the SNPs
selected based on the p-value of the ADE. As shown in
Table 2, we also show the percentages of the intermediate effect

calculated by: abs(AIE)
abs(ADE)+abs(AIE)

in percentage as mentioned by

Mackinnon et al. (2007). Alwin and Hauser (1975) discussed that
there might be situations where the coefficients of direct effect
and indirect effect will have opposite signs and hence they will
counteract each other. In that scenario, ratio of indirect effect to
total effect might be negative or greater than one. In this scenario,
the total effect is less than the total of absolute effects and a
possible solution to bypass this problem is to use the absolute
value of direct effect and indirect effect. A brief summary of SNPs
related to direct effect and indirect effect for the above human
traits is given in Table 2. In Figure 3, an example of a significant
SNP and the effect of mediation variables is shown to present the
fact that the human trait PicVocab is affected by the SNP through
the brain connectome.
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TABLE 2 | Average direct effect (ADE) and average indirect effect (AIE) are shown.

Traits SNP ADE P-value AIE p-value of βk p-value of αk % of GE

ReadEngrs rs138291276 –8.557 1.12E-02 1.413 3.46E-07 0.015 14.169

rs79993170 –1.861 3.26E-02 0.323 2.68E-06 0.020 14.795

rs149111244 –12.061 1.19E-03 1.398 3.99E-06 0.016 10.39

rs61956274 –15.969 1.14E-02 1.950 9.25E-06 0.043 10.88

rs79993170 –2.057 6.19E-03 0.279 2.68E-06 0.020 11.93

rs117384094 –8.339 3.48E-03 1.133 7.71E-07 0.018 11.96

PicVocab rs113713560 –7.676 2.46E-02 1.137 1.1E-05 0.025 12.90

rs117261313 –14.615 2.24E-02 2.197 6.47E-06 0.025 13.07

rs145868200 –14.615 2.24E-02 2.197 6.47E-06 0.025 13.07

rs150476682 –14.655 2.20E-02 2.232 6.49E-06 0.022 13.22

rs139895115 –14.641 2.20E-02 2.248 6.63E-06 0.021 13.31

rs138291276 –6.896 1.80E-02 1.156 3.46E-07 0.021 14.35

We see that there are 2 human traits for which SNPs have significant direct effect and significant indirect effect. We see that there is one significant mediation pathway through

connectome for these SNPs. The % of global effect column signifies the percentage of global effect explained by the mediation of connectome.

5. DISCUSSION

Our brain is divided into functionally specialized regions and
any cognitive task is usually involved in collaboration among
two or more specialized regions (Eickhoff et al., 2015). A
common assumption is that the white matter tracts among
these regions provide a structural basis for the communication
underlying such tasks. To check the overlaps of our clusters
(Ref to Figure 2) with existing anatomically meaningful fiber
bundles, we surveyed a list of ROIs that have appeared in the
existing literature (Friederici and Gierhan, 2013; Gupta et al.,
2017; Shin et al., 2019), which include inferior longitudinal
fasciculus (ILF); corpus callosum (CC); corticospinal tract (CST);
uncinate fasciculus (UF); inferior fronto-occipital fasciculus
(IFOF); superior longitudinal fasciculus (SLF); arcuate fasciculus
(AF). Some clusters have overlaps with only one of the ROIs
in the list above. For example, clusters 2 and 10 contain only
the ILF, while cluster 5 contains the CST. Other clusters might
have overlaps with multiple ROIs. For example, clusters 3 and 5
contain CC and UF; clusters 8 and 9 contain multiple important
language related ROIs such as SLF, AF, and IFOF (Friederici and
Gierhan, 2013). Although not overlapping with any ROIs in the
list, cluster 4 contains the majority of the fibers that originated
from the left parietal lobe and occipital lobe. The parietal lobe
can be divided into 4 subregions, among which there is the
inferior parietal lobule. Inferior parietal lobule has been linked
with various cognitive functions (Numssen et al., 2020), some
of which are believed to be lateralized to the left hemisphere,
for example, our language function (Friederici, 2016). Others
have also observed the left inferior parietal lobule’s importance in
mathematical reasoning (Eliez et al., 2001) and perspective tasks
(Arora et al., 2015).

The mediation analysis is of great scientific interest to explore
the extent of dependence on amediator. Here, we have performed
the mediation analysis to trace the causal pathway between SNPs
and human traits through the human brain connectome. The
SNPs that have both significant direct effect (DE) and indirect
effect (IE) were selected according to the p-values for both

effects were smaller than 0.05. In total, we found 2 and 453
SNPs (out of 942 total SNPs) for human traits ReadEng and
PicVocab, respectively. The top SNPs for ReadEng and 10 SNPs
for PicVocab are reported in Table 2. In Table 2, the p-values of
βk (see Equation (1)) and αk (see Equation (2)) are shown to
represent significant pathways through the connectome. The pair
(βk,αk) signifies a pathway through the connectome and the pair
(βl,αl) signifies another pathway through the connectome. For
those SNPs with significant direct effect and indirect effect, we
find that a moderate percentage (8–15%) of the global effect is

mediated by the brain connectome. Among the mediation paths
we found in our analysis, most of the SNPs only have mediation
effects through a single cluster and the mediation through cluster

7 is of most dominant. However, this may be related to the

fact that cluster 7 has the most associated (606 out of the 942
selected) SNPs in our GWAS analysis. Further analysis of other

imaging genetic studies with large sample size might uncover

the mediation pathways through other clusters and delineate the
mediation structure through multiple pathways.

To better explain the findings of our mediation analysis,

we have discussed all three possible cases as outcomes of

mediation analysis: significant direct effect with insignificant
indirect effect, significant indirect effect with insignificant direct

effect, and significant direct effect as well as indirect effect. As our

focus lies on the SNPs which have significant relationship with

connectome, i.e., we have already selected the SNPs where the

hypothesis H10 :βk = 0 vs. H11 :βk 6= 0 is rejected, we proceed

further in the following manner. In the first case, the hypothesis

H0 : η = 0 vs. H1 : η 6= 0 is rejected while we fail to reject the

null hypothesis H20 :αk = 0 vs. H21 :αk 6= 0 indicating that we
have significant direct effect without significant indirect effect. In
the second case, we fail to reject the hypothesis H0 : η = 0 vs.
H1 : η 6= 0 while the null hypothesis H20 :αk = 0 vs. H21 :αk 6= 0
is rejected indicating that we have an insignificant direct effect
but we find themediation pathway through the connectome to be
significant. In the third case, we are able to reject both hypotheses
indicating that the direct effect is significant as well as the
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indirect effect, i.e., the mediation pathway through connectome
is significant. In other words, the total effect of xi, i.e., SNP is
transmitted to Yi through two pathways, direct pathway (direct
effect is denoted by η) and indirect pathway through connectome
(xi → ωik → Yi) whose effect is observed as αkβk termed
as indirect effect. Our main focus lies on case three, i.e., both
hypotheses are rejected indicating significant direct effect and a
significant indirect effect. Table 3 represents the first two cases
where we see only one of the DE and IDE is significant while the
full results are available in Supplementary Table 2.

To understand the causal mediation of SNPs, we selected
a candidate SNP rs138291276 from the third case, i.e., SNPs
with both significant direct effects and indirect effects, as shown
in Table 2, this SNP has significant mediation effects on both
traits: PicVocab and ReadEng. On the one hand, we found that
rs138291276 is mapped to gene RPH3A, which is involved in
the stabilization of N-methyl-D-aspartate receptor (NMDARs)
(Franchini et al., 2019). This proposed that rs138291276’s
observed direct effect (DE) might be related to its expression
through RPH3A.On the other hand, we also observed amoderate
mediation (∼14%), which suggests an indirect pathway of this
SNP on human traits. The existence of both direct and indirect
pathways suggests investigation of the causal mechanics of
these two paths, their potential homogeneity, heterogeneity, and
interaction.

For the comprehensiveness of our discussion, we also selected
a candidate SNP rs4888388, from the second case, i.e., SNPs that
have a significant indirect effect but not a significant direct effect.
As shown in Table 1, SNP rs4888388 (imm_16_73951649) is
mapped to gene CDFP1 and associated with cluster3. In Messina
et al. (2017), CDFP1 is linked with microcephaly primary
hereditary (MCPH), a disease that can cause a reduction in brain
size and head circumference at birth. Worst cases of MCPH often
result in mild to severe mental retardation (Woods et al., 2005).
This evidence suggests that gene CDFP1 may be the potential
medium of the mediation pathway, from SNP rs4888388 to
human connectome cluster 3, and to human cognition. As
mentioned before, SNP rs4888388 has an insignificant direct
effect. This may propose that most of rs4888388’s ability to
affect human traits, is mediated through the human connectome.
Lastly, the existence of this mediation pathway within the
HCP1200 dataset also provides that the CDFP1’s effect on brain
structure and cognition not only exists in diseased patient but
also among healthy young adults.

We also tried non-parametric bootstrap to obtain the
mediation effects and p-values. We used the “mediation”
(https://cran.r-project.org/web/packages/mediation/mediation.
pdf) package in R to get the bootstrapped estimates and p-
values. We used 500 simulations with a sample size of 870
(the same as our original sample size). Then, the FDR controls
are adopted to adjust p-values for addressing the multiple
test issue. We see that the bootstrapped estimates are almost
identical to our original estimates while the p-values support
the significance of the estimates. We have also considered a
2-fold cross-validation. Specifically, we have randomly divided
the data of 870 subjects into two equal groups and fitted the
regression model in Equation (2) for all selected 942 SNPs.

We found that for PicVocab, no SNP has a significant direct
effect on both groups; for ReadEng, we have found three
SNPs have a significant direct effect in both groups but an
insignificant indirect effect for both groups. Since the reduced
power, we cannot find significant pathways for cross-validation.
In future work, an external data set with a larger size will
be considered.

To investigate the effect of genetically similar subjects from
the same family, we have randomly selected one subject from
each family and sample size of 434 individuals were considered
for further analysis. As discussed in Section 2.2, after using
FDR, we selected 2,433 SNPs for further mediation pathway
analysis. We found that out of 2433 SNPs, 555 SNPs were
selected in our earlier analysis of 942 SNPs where 870 subjects
were considered. Among the four human traits, we only found
significant mediation pathways for PicVocab. Compared to
previous results of 453 mediation pathways, we also found
most mediation pathways (67 mediation pathways) in PicVocab.
Out of these 67 mediation pathways, we found 12 SNPs which
were present in the set of 555 SNPs. Two SNPs, rs79993170
(JHU_1.246357095) and rs184384228, have also been found to be
significant in our previous analysis. Another SNP rs138843033
that turns out to be significant can also be seen in our
previous analysis with a p-value of direct effect as 0.06, slightly
greater than our cut-off of 0.05. Thus, we conclude that SNPs
rs79993170, rs184384228, and rs138843033 are considered as
valid SNP candidates formediation pathways from a conservative
point of view. We have attached the results of this analysis in
Supplementary Table 3. The coefficients and p-values of direct
effect and the p-values of mediation pathway are included. In the
table, we have also pointed out the results of the above 3 SNPs
in Supplementary Table 3, which overlap with our previous
analysis.We save all the results to keep the possibility of exploring
mediation pathways open.

There are a couple of limitations in the findings of our current
study. First, it is challenging for our proposed framework to
handle the twin/family studies because it does not take into
account the bias imposed by DZ twins as they share partial genes.
Although removing one of the DZ twins can avoid the correlation
within twins, it is inefficient due to the reduced sample size
and the loss of information contained in twins. In addition, the
current GWAS result is sensitive to the sampling mechanism
when randomly selecting one subject from each family. In fact, we
generated another four different sampling combinations of the
434 individuals, and the number of significant SNPs were 1771,
139, 2329, and 777, respectively, which varies a lot across different
sampling combinations. Therefore, it is of great importance
to develop advanced statistical models and address the issues
in twin/family studies. Furthermore, the results need to be
replicated using large samples in future studies. Second, choosing
the number of clusters is still an open problem. Although the
choice of 10 clusters provides us with better performance in terms
of both visualization and explainability of brain connectomes,
it lacks further structural justification. Thus, it will be an
interesting direction to leverage brain structure and connectivity
information and develop some learning techniques in finding the
optimal number of clusters in brain connectomes.
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TABLE 3 | ADE and AIE are shown for cases where we see the significant direct effect without significant indirect effect and insignificant direct effect with significant

indirect effect corresponding to the human trait ReadEng.

Cases SNP Direct effect P-value of DE Indirect effect p-value of beta_k p-value of alpha_k % of GE

Significant IDE without significant DE rs138843033 –9.7122 0.0657 1.9390 2.127E-06 0.0221 16.6422

rs117384094 –6.0722 0.0659 1.2483 7.714E-07 0.0240 17.0521

rs149175148 –13.1205 0.0732 2.4151 1.670E-05 0.0239 15.5454

rs149111244 –7.5596 0.0798 1.5294 3.995E-06 0.0233 16.8268

rs113713560 –6.8519 0.0832 1.3293 1.097E-05 0.0242 16.2486

Insignificant IDE with significant DE rs79720263 9.9466 0.0000 0.4819 1.192E-05 0.1657 4.6208

rs11572851 6.6542 0.0004 -0.5431 6.294E-06 0.0595 7.5461

rs116785568 –17.9289 0.0006 0.9966 2.317E-07 0.2727 5.2658

rs113673946 6.3234 0.0012 –0.5341 1.802E-05 0.0600 7.7887

rs9342351 2.1728 0.0042 –0.2048 1.318E-05 0.0670 8.6148
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