31 research outputs found

    RNA Pol II Length and Disorder Enable Cooperative Scaling of Transcriptional Bursting

    Get PDF
    RNA polymerase II (RNA Pol II) contains a disordered C-terminal domain (CTD) whose length enigmatically correlates with genome size. The CTD is crucial to eukaryotic transcription, yet the functional and evolutionary relevance of this variation remains unclear. Here, we investigate how CTD length and disorder influence transcription. We find that length modulates the size and frequency of transcriptional bursting. Disorder is highly conserved and facilitates CTD-CTD interactions, an ability we show is separable from protein sequence and necessary for efficient transcription. We build a data-driven quantitative model, simulations of which recapitulate experiments and support that CTD length promotes initial polymerase recruitment to the promoter and slows down its release from it and that CTD-CTD interactions enable recruitment of multiple polymerases. Our results reveal how these parameters provide access to a range of transcriptional activity, offering a new perspective for the mechanistic significance of CTD length and disorder in transcription across eukaryotes

    Quantifying how post-transcriptional noise and gene copy number variation bias transcriptional parameter inference from mRNA distributions

    Get PDF
    Transcriptional rates are often estimated by fitting the distribution of mature mRNA numbers measured using smFISH (single molecule fluorescence in situ hybridization) with the distribution predicted by the telegraph model of gene expression, which defines two promoter states of activity and inactivity. However, fluctuations in mature mRNA numbers are strongly affected by processes downstream of transcription. In addition, the telegraph model assumes one gene copy but in experiments, cells may have two gene copies as cells replicate their genome during the cell cycle. While it is often presumed that post-transcriptional noise and gene copy number variation affect transcriptional parameter estimation, the size of the error introduced remains unclear. To address this issue, here we measure both mature and nascent mRNA distributions of GAL10 in yeast cells using smFISH and classify each cell according to its cell cycle phase. We infer transcriptional parameters from mature and nascent mRNA distributions, with and without accounting for cell cycle phase and compare the results to live-cell transcription measurements of the same gene. We find that: (i) correcting for cell cycle dynamics decreases the promoter switching rates and the initiation rate, and increases the fraction of time spent in the active state, as well as the burst size; (ii) additional correction for post-transcriptional noise leads to further increases in the burst size and to a large reduction in the errors in parameter estimation. Furthermore, we outline how to correctly adjust for measurement noise in smFISH due to uncertainty in transcription site localisation when introns cannot be labelled. Simulations with parameters estimated from nascent smFISH data, which is corrected for cell cycle phases and measurement noise, leads to autocorrelation functions that agree with those obtained from live-cell imaging

    Dot1 binding induces chromatin rearrangements by histone methylation-dependent and -independent mechanisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methylation of histone H3 lysine 79 (H3K79) by Dot1 is highly conserved among species and has been associated with both gene repression and activation. To eliminate indirect effects and examine the direct consequences of Dot1 binding and H3K79 methylation, we investigated the effects of targeting Dot1 to different positions in the yeast genome.</p> <p>Results</p> <p>Targeting Dot1 did not activate transcription at a euchromatic locus. However, chromatin-bound Dot1 derepressed heterochromatin-mediated gene silencing over a considerable distance. Unexpectedly, Dot1-mediated derepression was established by both a H3K79 methylation-dependent and a methylation-independent mechanism; the latter required the histone acetyltransferase Gcn5. By monitoring the localization of a fluorescently tagged telomere in living cells, we found that the targeting of Dot1, but not its methylation activity, led to the release of a telomere from the repressive environment at the nuclear periphery. This probably contributes to the activity-independent derepression effect of Dot1.</p> <p>Conclusions</p> <p>Targeting of Dot1 promoted gene expression by antagonizing gene repression through both histone methylation and chromatin relocalization. Our findings show that binding of Dot1 to chromatin can positively affect local gene expression by chromatin rearrangements over a considerable distance.</p

    Dysregulated RasGRP1 Responds to Cytokine Receptor Input in T Cell Leukemogenesis

    Get PDF
    Enhanced signaling by the small guanosine triphosphatase Ras is common in T cell acute lymphoblastic leukemia/lymphoma (T-ALL), but the underlying mechanisms are unclear. We identified the guanine nucleotide exchange factor RasGRP1 (Rasgrp1 in mice) as a Ras activator that contributes to leukemogenesis. We found increased RasGRP1 expression in many pediatric T-ALL patients, which is not observed in rare early T cell precursor T-ALL patients with KRAS and NRAS mutations, such as K-Ras[superscript G12D]. Leukemia screens in wild-type mice, but not in mice expressing the mutant K-Ras[superscript G12D] that encodes a constitutively active Ras, yielded frequent retroviral insertions that led to increased Rasgrp1 expression. Rasgrp1 and oncogenic K-Ras[superscript G12D] promoted T-ALL through distinct mechanisms. In K-Ras[superscript G12D] T-ALLs, enhanced Ras activation had to be uncoupled from cell cycle arrest to promote cell proliferation. In mouse T-ALL cells with increased Rasgrp1 expression, we found that Rasgrp1 contributed to a previously uncharacterized cytokine receptor–activated Ras pathway that stimulated the proliferation of T-ALL cells in vivo, which was accompanied by dynamic patterns of activation of effector kinases downstream of Ras in individual T-ALLs. Reduction of Rasgrp1 abundance reduced cytokine-stimulated Ras signaling and decreased the proliferation of T-ALL in vivo. The position of RasGRP1 downstream of cytokine receptors as well as the different clinical outcomes that we observed as a function of RasGRP1 abundance make RasGRP1 an attractive future stratification marker for T-ALL.National Institutes of Health (U.S.). Pioneer AwardNational Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institutes of Health (U.S.). (P01 AI091580

    Systematic Triple-Mutant Analysis Uncovers Functional Connectivity between Pathways Involved in Chromosome Regulation

    Get PDF
    Genetic interactions reveal the functional relationships between pairs of genes. In this study, we describe a method for the systematic generation and quantitation of triple mutants, termed Triple Mutant Analysis (TMA). We have used this approach to interrogate partially redundant pairs of genes in S. cerevisiae, including ASF1 and CAC1, two histone chaperones. After subjecting asf1Δ cac1Δ to TMA, we found that the Swi/Snf Rdh54 protein, compensates for the absence of Asf1 and Cac1. Rdh54 more strongly associates with the chromatin apparatus and the pericentromeric region in the double mutant. Moreover, Asf1 is responsible for the synthetic lethality observed in cac1Δ strains lacking the HIRA-like proteins. A similar TMA was carried out after deleting both CLB5 and CLB6, cyclins that regulate DNA replication, revealing a strong functional connection to chromosome segregation. This approach can reveal functional redundancies that cannot be uncovered using traditional double mutant analyses

    Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs

    Get PDF
    The EKC/KEOPS complex is universally conserved in Archaea and Eukarya and has been implicated in several cellular processes, including transcription, telomere homeostasis and genomic instability. However, the molecular function of the complex has remained elusive so far. We analyzed the transcriptome of EKC/KEOPS mutants and observed a specific profile that is highly enriched in targets of the Gcn4p transcriptional activator. GCN4 expression was found to be activated at the translational level in mutants via the defective recognition of the inhibitory upstream ORFs (uORFs) present in its leader. We show that EKC/KEOPS mutants are defective for the N6-threonylcarbamoyl adenosine modification at position 37 (t6A37) of tRNAs decoding ANN codons, which affects initiation at the inhibitory uORFs and provokes Gcn4 de-repression. Structural modeling reveals similarities between Kae1 and bacterial enzymes involved in carbamoylation reactions analogous to t6A37 formation, supporting a direct role for the EKC in tRNA modification. These findings are further supported by strong genetic interactions of EKC mutants with a translation initiation factor and with threonine biosynthesis genes. Overall, our data provide a novel twist to understanding the primary function of the EKC/KEOPS and its impact on several essential cellular functions like transcription and telomere homeostasis

    A Barcode Screen for Epigenetic Regulators Reveals a Role for the NuB4/HAT-B Histone Acetyltransferase Complex in Histone Turnover

    Get PDF
    Dynamic modification of histone proteins plays a key role in regulating gene expression. However, histones themselves can also be dynamic, which potentially affects the stability of histone modifications. To determine the molecular mechanisms of histone turnover, we developed a parallel screening method for epigenetic regulators by analyzing chromatin states on DNA barcodes. Histone turnover was quantified by employing a genetic pulse-chase technique called RITE, which was combined with chromatin immunoprecipitation and high-throughput sequencing. In this screen, the NuB4/HAT-B complex, containing the conserved type B histone acetyltransferase Hat1, was found to promote histone turnover. Unexpectedly, the three members of this complex could be functionally separated from each other as well as from the known interacting factor and histone chaperone Asf1. Thus, systematic and direct interrogation of chromatin structure on DNA barcodes can lead to the discovery of genes and pathways involved in chromatin modification and dynamics

    Cross Correlation of Transcription Factor Binding and RNA Synthesis in Saccharomyces cerevisiae by 3D Orbital Tracking

    No full text
    This project utilized 3D orbital tracking and a newly developed fluorescent labeling strategy that allows simultaneous visualization of pre-mRNA and transcription factors inside of living yeast cells. This allowed us to follow the fate of individual eukaryotic pre-mRNA molecules as they undergo transcription in real time and enable complete kinetic characterization of the initiation, elongation and release of individual RNA molecules as well as single molecule temporal correlation of transcription factor binding to DNA. In previous work, due to the rapid photobleaching of cells, 10-20 measurements were averaged together to determine transcriptional kinetics. With 3D orbital tracking, the information garnered in three previous experiments on two separate microscopes will be available in a single cell measurement at a 100x times faster sampling rate

    RNA Pol II Length and Disorder Enable Cooperative Scaling of Transcriptional Bursting

    No full text
    RNA polymerase II (RNA Pol II) contains a disordered C-terminal domain (CTD) whose length enigmatically correlates with genome size. The CTD is crucial to eukaryotic transcription, yet the functional and evolutionary relevance of this variation remains unclear. Here, we investigate how CTD length and disorder influence transcription. We find that length modulates the size and frequency of transcriptional bursting. Disorder is highly conserved and facilitates CTD-CTD interactions, an ability we show is separable from protein sequence and necessary for efficient transcription. We build a data-driven quantitative model, simulations of which recapitulate experiments and support that CTD length promotes initial polymerase recruitment to the promoter and slows down its release from it and that CTD-CTD interactions enable recruitment of multiple polymerases. Our results reveal how these parameters provide access to a range of transcriptional activity, offering a new perspective for the mechanistic significance of CTD length and disorder in transcription across eukaryotes
    corecore