11 research outputs found

    Present and future use of antimicrobials in pigs in developing countries and case studies from Uganda and Vietnam

    Get PDF
    Demand for pork is growing rapidly in developing countries, and will be mostly met by intensive production. Although this can produce large quantities of affordable meat, it can have environmental, social and human health externalities. We report on recent studies conducted by ILRI and partners on antimicrobial use in pork production in developing countries and antimicrobial resistance (AMR) in pork

    CD4\u3csup\u3e+\u3c/sup\u3e T cells in the lungs of acute sarcoidosis patients recognize an Aspergillus nidulans epitope

    Get PDF
    Löfgren’s syndrome (LS) is an acute form of sarcoidosis characterized by a genetic association with HLA-DRB1*03 (HLA-DR3) and an accumulation of CD4+ T cells of unknown specificity in the bronchoalveolar lavage (BAL). Here, we screened related LS-specific TCRs for antigen specificity and identified a peptide derived from NAD-dependent histone deacetylase hst4 (NDPD) of Aspergillus nidulans that stimulated these CD4+ T cells in an HLA-DR3–restricted manner. Using ELISPOT analysis, a greater number of IFN-γ– and IL-2–secreting T cells in the BAL of DR3+ LS subjects compared with DR3+ control subjects was observed in response to the NDPD peptide. Finally, increased IgG antibody responses to A. nidulans NDPD were detected in the serum of DR3+ LS subjects. Thus, our findings identify a ligand for CD4+ T cells derived from the lungs of LS patients and suggest a role of A. nidulans in the etiology of LS

    Beryllium-specific CD4\u3csup\u3e+\u3c/sup\u3e T cells induced by chemokine neoantigens perpetuate inflammation

    Get PDF
    Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2–expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium-specific (Be-specific) CD4+ T cells in the lung. We discovered lung-resident CD4+ T cells that expressed a disease-specific public CDR3β T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligand 4 (CCL4) and CCL3. HLADP2–CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and CCL4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2–CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a cycle of innate and adaptive immune activation

    Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease

    Get PDF
    Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4+ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4+ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4+ T cells specific for these ligands in all HLA-DP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4+ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD

    Beryllium-specific CD4+ T cells induced by chemokine neoantigens perpetuate inflammation

    Get PDF
    Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2-expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium (Be)-specific CD4+ T cells in the lung. We discovered lung resident CD4+ T cells that expressed a disease-specific public CDR3β T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligands 4 (CCL4) and 3 (CCL3). HLA-DP2-CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and 4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2-CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a vicious cycle of innate and adaptive immune activation

    Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease

    Get PDF
    Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4(+) T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4(+) T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4(+) T cells specific for these ligands in all HLA-DP2(+) CBD patients tested. Thus, our findings identify the first ligand for a CD4(+) T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD

    Characterization of Salmonella Isolates Obtained From Pigs Slaughtered at Wambizzi Abattoir in Kampala, Uganda

    Get PDF
    Globally, non-typhoidal salmonellosis accounts for approximately 80.3 million cases of human infections annually. Estimates of salmonellosis due to consumption of pork or pork products is difficult to determine but, it ranges from < 1% to 25%. These invasive pathogens colonize intestinal mucosal surface but, they are self-limiting in health individuals due to a noble immunity. Utilization of antimicrobial agents in pig farming has been associated with the spread of resistant Salmonella species to man and the carrier status presents a major hazard to human health. This study examined 54 isolates for antimicrobial resistance, sequenced seven housekeeping genes, and performed Multi-Locus Sequence Type (MLST) analysis. We detected β-lactamase and tetA(B) genes in 100% and 80% of the isolates respectively. Data analysis using Codon[1]based Test of Neutrality analysis between sequences revealed P-value less than 0.05, an indication of strong forces of natural selection pressure acting at the sequence type level. Further data analysis using the Maximum Composite Likelihood Estimate of the Pattern of Nucleotide Substitution discovered frequencies of 0.177 (A), 0.244 (T/U), 0.263 (C), and 0.317 (G). The transition/transversion rate ratios were found to be k1 = 2.698 (purines) and k2 = 20.089 (pyrimidines) with an overall transition/transversion bias of R = 6.565, where R = [A*G*k1 + T*C*k2]/[(A+G)*(T+C)] further confirming that indeed the Salmonella isolates studied here were divergent. These results suggest that, Salmonella isolates of sequence types (STs) coexist in the intestine thereby providing for an efficient intestinal colonization and multiple adaptations. Our results offer general and rapid approaches for identifying genetic diversity of Salmonella serotypes in individual pig carcasses which can be adopted for molecular epidemiological surveys of important food contaminating bacterial pathogens

    Present and future use of antimicrobials in pigs in developing countries and case studies from Uganda and Vietnam

    Get PDF
    Demand for pork is growing rapidly in developing countries, and will be mostly met by intensive production. Although this can produce large quantities of affordable meat, it can have environmental, social and human health externalities. We report on recent studies conducted by ILRI and partners on antimicrobial use in pork production in developing countries and antimicrobial resistance (AMR) in pork.</p

    CD4+ T Cells in the Lungs of Acute Sarcoidosis Patients Recognize an Aspergillus Nidulans Epitope

    Get PDF
    Löfgren’s syndrome (LS) is an acute form of sarcoidosis characterized by a genetic association with HLA-DRB1*03 (HLA-DR3) and an accumulation of CD4+ T cells of unknown specificity in the bronchoalveolar lavage (BAL). Here, we screened related LS-specific TCRs for antigen specificity and identified a peptide derived from NAD-dependent histone deacetylase hst4 (NDPD) of Aspergillus nidulans that stimulated these CD4+ T cells in an HLA-DR3–restricted manner. Using ELISPOT analysis, a greater number of IFN-γ– and IL-2–secreting T cells in the BAL of DR3+ LS subjects compared with DR3+ control subjects was observed in response to the NDPD peptide. Finally, increased IgG antibody responses to A. nidulans NDPD were detected in the serum of DR3+ LS subjects. Thus, our findings identify a ligand for CD4+ T cells derived from the lungs of LS patients and suggest a role of A. nidulans in the etiology of LS
    corecore