24 research outputs found

    Real-time PCR detection of Human Herpesvirus 1-5 in patients lacking clinical signs of a viral CNS infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infections of the central nervous system (CNS) with herpes- or enterovirus can be self-limiting and benign, but occasionally result in severe and fatal disease. The polymerase chain reaction (PCR) has revolutionized the diagnostics of viral pathogens, and by multiple displacement amplification (MDA) prior to real-time PCR the sensitivity might be further enhanced. The aim of this study was to investigate if herpes- or enterovirus can be detected in cerebrospinal fluid (CSF) from patients without symptoms.</p> <p>Methods</p> <p>Cerebrospinal fluid (CSF) samples from 373 patients lacking typical symptoms of viral CNS infection were analysed by real-time PCR targeting herpesviruses or enteroviruses with or without prior MDA.</p> <p>Results</p> <p>In total, virus was detected in 17 patients (4%). Epstein-Barr virus (EBV) was most commonly detected, in general from patients with other conditions (e.g. infections, cerebral hemorrhage). MDA satisfactorily amplified viral DNA in the absence of human nucleic acids, but showed poor amplification capacity for viral DNA in CSF samples, and did not increase the sensitivity for herpes virus-detection with our methodology.</p> <p>Conclusions</p> <p>Viral pathogens are rarely detected in CSF from patients without signs of CNS infection, supporting the view that real-time PCR is a highly specific method to detect symptomatic CNS-infection caused by these viruses. However, EBV may be subclinically reactivated due to other pathological conditions in the CNS.</p

    Source Control of Gram-Negative Bacteria Using Self-Disinfecting Sinks in a Swedish Burn Centre

    No full text
    Several retrospective studies have identified hospital sinks as reservoirs of Gram-negative bacteria. The aim of this study was to prospectively investigate the bacterial transmission from sinks to patients and if self-disinfecting sinks could reduce this risk. Samples were collected weekly from sinks (self-disinfecting, treated with boiling water, not treated) and patients in the Burn Centre at Linkoping University Hospital, Sweden. The antibiotic susceptibility of Gram-negative isolates was tested, and eight randomly chosen patient isolates and their connected sink isolates were subjected to whole genome sequencing (WGS). Of 489 sink samples, 232 (47%) showed growth. The most frequent findings were Stenotrophomonas maltophilia (n = 130), Pseudomonas aeruginosa (n = 128), and Acinetobacter spp. (n = 55). Bacterial growth was observed in 20% of the samplings from the self-disinfecting sinks and in 57% from the sinks treated with boiling water (p = 0.0029). WGS recognized one transmission of Escherichia coli sampled from an untreated sink to a patient admitted to the same room. In conclusion, the results showed that sinks can serve as reservoirs of Gram-negative bacteria and that self-disinfecting sinks can reduce the transmission risk. Installing self-disinfecting sinks in intensive care units is an important measure in preventing nosocomial infection among critically ill patients

    Source Control of Gram-Negative Bacteria Using Self-Disinfecting Sinks in a Swedish Burn Centre

    No full text
    Several retrospective studies have identified hospital sinks as reservoirs of Gram-negative bacteria. The aim of this study was to prospectively investigate the bacterial transmission from sinks to patients and if self-disinfecting sinks could reduce this risk. Samples were collected weekly from sinks (self-disinfecting, treated with boiling water, not treated) and patients in the Burn Centre at Linkoping University Hospital, Sweden. The antibiotic susceptibility of Gram-negative isolates was tested, and eight randomly chosen patient isolates and their connected sink isolates were subjected to whole genome sequencing (WGS). Of 489 sink samples, 232 (47%) showed growth. The most frequent findings were Stenotrophomonas maltophilia (n = 130), Pseudomonas aeruginosa (n = 128), and Acinetobacter spp. (n = 55). Bacterial growth was observed in 20% of the samplings from the self-disinfecting sinks and in 57% from the sinks treated with boiling water (p = 0.0029). WGS recognized one transmission of Escherichia coli sampled from an untreated sink to a patient admitted to the same room. In conclusion, the results showed that sinks can serve as reservoirs of Gram-negative bacteria and that self-disinfecting sinks can reduce the transmission risk. Installing self-disinfecting sinks in intensive care units is an important measure in preventing nosocomial infection among critically ill patients

    The intranasal adjuvant Endocine((TM)) enhances both systemic and mucosal immune responses in aged mice immunized with influenza antigen

    No full text
    Despite availability of annual influenza vaccines, influenza causes significant morbidity and mortality in the elderly. This is at least in part a result of immunosenescence; the age-dependent decrease in immunological competence that results in greater susceptibility to infections and reduced responses to vaccination. To improve protective immune responses in this age group, new vaccines strategies, such as the use of adjuvants, are needed. Here, we evaluated the mucosal vaccine adjuvant Endocine(TM), formulated with split influenza antigen and administered intranasally in aged (20-month old) mice. Humoral immune responses were assessed and compared to unadjuvanted intranasal and subcutaneous vaccines. We show that formulation with Endocine(TM) significantly enhances hemagglutination inhibition (HI) titers, as well as serum IgG and mucosal IgA antibody titers, compared to both types of unadjuvanted vaccines. Thus, our results indicate that intranasal vaccination with Endocine(TM) is a possible approach for the development of mucosal influenza vaccines for the elderly

    Comparison of the mucosal adjuvant Endocine™ with two well-known adjuvants : cholera toxin and alum

    No full text
    To enable efficient mucosal vaccination with split or subunit antigens, an adjuvant is often needed. To date, no mucosal adjuvants are approved for human use, however, there are a variety of mucosal adjuvants in development, including the liposome-based adjuvant Endocine™. The aim of this study was to evaluate split influenza antigens together with Endocine™ and in order to assess the potency of Endocine™, the induction of humoral immune responses were compared to those following influenza vaccination with cholera toxin (CT) or aluminum salt (alum). We show that Endocine™ significantly enhances influenza-specific immune responses in intranasally immunized mice compared to nonadjuvanted vaccine. Furthermore, vaccines adjuvanted with Endocine™ evoked comparable serum IgG and virus neutralizing (VN) antibody titers as nasal vaccines adjuvanted with CT. Compared to parenteral vaccination with alum, Endocine™ triggered significantly higher mucosal and serum IgA titers, and similar VN titers. Taken together, these results support further development of Endocine™ as a mucosal adjuvant and as part of a nasal influenza vaccine candidate

    Реконструкция системы электроснабжения ОАО «Светлогорский завод ЖБИиК» в связя с заменой устаревшего электрооборудования

    No full text
    To enable efficient mucosal vaccination with split or subunit antigens, an adjuvant is often needed. To date, no mucosal adjuvants are approved for human use, however, there are a variety of mucosal adjuvants in development, including the liposome-based adjuvant Endocine™. The aim of this study was to evaluate split influenza antigens together with Endocine™ and in order to assess the potency of Endocine™, the induction of humoral immune responses were compared to those following influenza vaccination with cholera toxin (CT) or aluminum salt (alum). We show that Endocine™ significantly enhances influenza-specific immune responses in intranasally immunized mice compared to nonadjuvanted vaccine. Furthermore, vaccines adjuvanted with Endocine™ evoked comparable serum IgG and virus neutralizing (VN) antibody titers as nasal vaccines adjuvanted with CT. Compared to parenteral vaccination with alum, Endocine™ triggered significantly higher mucosal and serum IgA titers, and similar VN titers. Taken together, these results support further development of Endocine™ as a mucosal adjuvant and as part of a nasal influenza vaccine candidate

    Mucosal influenza HA-specific IgA in nasal wash samples.

    No full text
    <p>Mice were immunized with a split influenza vaccine (Vaxigrip) containing the A/H1N1/Brisbane/2007 strain with or without adjuvant. The groups were immunized three times with three-week intervals. (A) Mucosal influenza HA-specific IgA in the nasal wash samples is shown. Median and range is shown for each group and statistical significance compared to the non-adjuvanted group is indicated, **p<0.003.</p

    HAI and NT-antibody titers against influenza A/H1N1/Brisbane in serum after the final immunization.

    No full text
    <p>Mice were immunized with a split influenza vaccine (Vaxigrip) containing the A/H1N1/Brisbane/2007 strain with or without adjuvant. The groups were immunized three times with three-week intervals. The HAI and NT-antibody reactivity against influenza A/H1N1/Brisbane in serum after the final immunization are shown. Median and range is shown for each group. Values <10 in HAI was set as 5 and values <100 in the NT-assay was set as 20. Statistical significances compared to the non-adjuvanted group are indicated, *p<0.017 and **p<0.003.</p

    Multiple nuclear-replicating viruses require the stress-induced protein ZC3H11A for efficient growth

    No full text
    The zinc finger CCCH-type containing 11A (ZC3H11A) gene encodes a well-conserved zinc finger protein that may function in mRNA export as it has been shown to associate with the transcription export (TREX) complex in proteomic screens. Here, we report that ZC3H11A is a stress-induced nuclear protein with RNA-binding capacity that localizes to nuclear splicing speckles. During an adenovirus infection, the ZC3H11A protein and splicing factor SRSF2 relocalize to nuclear regions where viral DNA replication and transcription take place. Knockout (KO) of ZC3H11A in HeLa cells demonstrated that several nuclear-replicating viruses are dependent on ZC3H11A for efficient growth (HIV, influenza virus, herpes simplex virus, and adenovirus), whereas cytoplasmic replicating viruses are not (vaccinia virus and Semliki Forest virus). High-throughput sequencing of ZC3H11A–cross-linked RNA showed that ZC3H11A binds to short purine-rich ribonucleotide stretches in cellular and adenoviral transcripts. We show that the RNA-binding property of ZC3H11A is crucial for its function and localization. In ZC3H11A KO cells, the adenovirus fiber mRNA accumulates in the cell nucleus. Our results suggest that ZC3H11A is important for maintaining nuclear export of mRNAs during stress and that several nuclear-replicating viruses take advantage of this mechanism to facilitate their replication.Funding agencies: Knut and Alice Wallenberg Foundation; Swedish Cancer Society</p
    corecore