102 research outputs found

    Phase Equilibria And Thermodynamic Studies In The System CaO-FeO-Fe2O3-SiO2

    Get PDF
    Phase equilibria and thermodynamic properties of the system CaO-FeO-Fe2O3-SiO2 were studied at 1450° and 1550°C, over a range of pO2 from 1 to about 10-11 atm. Isothermal phase diagrams and activity-composition diagrams were constructed for 0, 5, 10, 20, and 30 wt pct SiO2 sections. The data are applicable to further understanding the behavior of simple BOF steelmaking slags. © 1970 The Minerals, Metals & Materials Society - ASM International - The Materials Information Society

    Physics Based Model for Cryogenic Chilldown and Loading. Part III: Correlations

    Get PDF
    In this report we discuss the details of the correlations used to recognize flow patterns and predict frictional losses, heat and mass transfer in the cryogenic two phase flow. The emphasis are put on the formulation of the correlation problem in terms of concise parametric and functional spaces allowing for efficient online search of the model parameters and accurate prediction of the phenomena observed during cryogenic loading. A special attention is paid to the discussion of the correlation dependence on the gravity. In this context the physics of stability, friction, and boiling in the two-phase flow that underlies the required correlations is discussed

    Inferential framework for two-fluid model of cryogenic chilldown

    Get PDF
    We report a development of probabilistic framework for parameter inference of cryogenic two-phase flow based on fast two-fluid solver. We introduce a concise set of cryogenic correlations and discuss its parameterization. We present results of application of proposed approach to the analysis of cryogenic chilldown in horizontal transfer line. We demonstrate simultaneous optimization of large number of model parameters obtained using global optimization algorithms. It is shown that the proposed approach allows accurate predictions of experimental data obtained both with saturated and sub-cooled liquid nitrogen flow. We discuss extension of predictive capabilities of the model to practical full scale systems

    GeneLab: Scientific Partnerships and an Open-Access Database to Maximize Usage of Omics Data from Space Biology Experiments

    Get PDF
    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. The GeneLab Data System (GLDS) is NASAs premier open-access omics data platform for biological experiments. GLDS houses standards-compliant, high-throughput sequencing and other omics data from spaceflight-relevant experiments. The GeneLab project at NASA-Ames Research Center is developing the database, and also partnering with spaceflight projects through sharing or augmentation of experiment samples to expand omics analyses on precious spaceflight samples. The partnerships ensure that the maximum amount of data is garnered from spaceflight experiments and made publically available as rapidly as possible via the GLDS. GLDS Version 1.0, went online in April 2015. Software updates and new data releases occur at least quarterly. As of October 2016, the GLDS contains 80 datasets and has search and download capabilities. Version 2.0 is slated for release in September of 2017 and will have expanded, integrated search capabilities leveraging other public omics databases (NCBI GEO, PRIDE, MG-RAST). Future versions in this multi-phase project will provide a collaborative platform for omics data analysis. Data from experiments that explore the biological effects of the spaceflight environment on a wide variety of model organisms are housed in the GLDS including data from rodents, invertebrates, plants and microbes. Human datasets are currently limited to those with anonymized data (e.g., from cultured cell lines). GeneLab ensures prompt release and open access to high-throughput genomics, transcriptomics, proteomics, and metabolomics data from spaceflight and ground-based simulations of microgravity, radiation or other space environment factors. The data are meticulously curated to assure that accurate experimental and sample processing metadata are included with each data set. GLDS download volumes indicate strong interest of the scientific community in these data. To date GeneLab has partnered with multiple experiments including two plant (Arabidopsis thaliana) experiments, two mice experiments, and several microbe experiments. GeneLab optimized protocols in the rodent partnerships for maximum yield of RNA, DNA and protein from tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected on the ground. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and as well as yield terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space environments

    Bioinformatics challenges and potentialities in studying extreme environments

    Get PDF
    Cold environments are populated by organisms able to contravene deleterious effects of low temperature by diverse adaptive strategies, including the production of ice binding proteins (IBPs) that inhibit the growth of ice crystals inside and outside cells. We describe the properties of such a protein (EfcIBP) identified in the metagenome of an Antarctic biological consortium composed of the ciliate Euplotes focardii and psychrophilic non-cultured bacteria. Recombinant EfcIBP can resist freezing without any conformational damage and is moderately heat stable, with a midpoint temperature of 66.4 degrees C. Tested for its effects on ice, EfcIBP shows an unusual combination of properties not reported in other bacterial IBPs. First, it is one of the best-performing IBPs described to date in the inhibition of ice recrystallization, with effective concentrations in the nanomolar range. Moreover, EfcIBP has thermal hysteresis activity (0.53 degrees C at 50 mu M) and it can stop a crystal from growing when held at a constant temperature within the thermal hysteresis gap. EfcIBP protects purified proteins and bacterial cells from freezing damage when exposed to challenging temperatures. EfcIBP also possesses a potential N-terminal signal sequence for protein transport and a DUF3494 domain that is common to secreted IBPs. These features lead us to hypothesize that the protein is either anchored at the outer cell surface or concentrated around cells to provide survival advantage to the whole cell consortium

    The O/OREOS Mission - Astrobiology in Low Earth Orbit

    Get PDF
    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu.cm) modules: (i) a control bus, (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment, and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for micro-organisms at 3 times during the 6-month mission. We will report on the spacecraft characteristics, payload capabilities and first operational phase of the O/OREOS mission. The science and technology rationale of O/OREOS supports NASAs scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities

    Identification of biomarkers for the antiangiogenic and antitumour activity of the superoxide dismutase 1 (SOD1) inhibitor tetrathiomolybdate (ATN-224)

    Get PDF
    Tetrathiomolybdate (choline salt; ATN-224), a specific, high-affinity copper binder, is currently being evaluated in several phase II cancer trials. ATN-224 inhibits CuZn superoxide dismutase 1 (SOD1) leading to antiangiogenic and antitumour effects. The pharmacodynamics of tetrathiomolybdate has been followed by tracking ceruloplasmin (Cp), a biomarker for systemic copper. However, at least in mice, the inhibition of angiogenesis occurs before a measurable decrease in systemic copper is observed. Thus, the identification and characterisation of other biomarkers to follow the activity of ATN-224 in the clinic is of great interest. Here, we present the preclinical evaluation of two potential biomarkers for the activity of ATN-224: (i) SOD activity measurements in blood cells in mice and (ii) levels of endothelial progenitor cells (EPCs) in bonnet macaques treated with ATN-224. The superoxide dismutase activity in blood cells in mice is rapidly inhibited by ATN-224 treatment at doses at which angiogenesis is maximally inhibited. Furthermore, ATN-224 dosing in bonnet macaques causes a profound and reversible decrease in EPCs without significant toxicity. Thus, both SOD activity measurements and levels of EPCs may be useful biomarkers of the antiangiogenic activity of ATN-224 to be used in its clinical development

    The relation between endothelial dependent flow mediated dilation of the brachial artery and coronary collateral development – a cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial dysfunction is thought to be a potential mechanism for the decreased presence of coronary collaterals. The aim of the study was to investigate the association between systemic endothelial function and the extent of coronary collaterals.</p> <p>Methods</p> <p>We investigated the association between endothelial function assessed via flow mediated dilation (FMD) of the brachial artery following reactive hyperemia and the extent of coronary collaterals graded from 0 to 3 according to Rentrop classification in a cohort of 171 consecutive patients who had high grade coronary stenosis or occlusion on their angiograms.</p> <p>Results</p> <p>Mean age was 61 years and 75% were males. Of the 171 patients 88 (51%) had well developed collaterals (grades of 2 or 3) whereas 83 (49%) had impaired collateral development (grades of 0 or 1). Patients with poor collaterals were significantly more likely to have diabetes (<it>p </it>= 0.001), but less likely to have used statins (<it>p </it>= 0.083). FMD measurements were not significantly different among good and poor collateral groups (11.5 ± 5.6 vs. 10.4 ± 6.2% respectively, <it>p </it>= 0.214). Nitroglycerin mediated dilation was also similar (13.4 ± 5.9 vs. 12.8 ± 6.5%, <it>p </it>= 0.521).</p> <p>Conclusion</p> <p>No significant association was found between the extent of angiographically visible coronary collaterals and systemic endothelial function assessed by FMD of the brachial artery.</p
    corecore