1,553 research outputs found
Recommended from our members
Miss Manners: A Specialized Silicon Compiler for Synchronizers
Miss Manners is a synchronizer generator that will produce the layout of a synchronizer given a high-level description. A synchronizer generator is a type of specialized silicon compiler. Synchronizer generators can greatly aid the design of systems that are structured as loosely-coupled networks of autonomous subsystems. Chips that are structured in this way have reduced communication requirements and greater tolerance for transient failures. We describe a language for specifying synchronization requirements and a compiler for translating the language into circuits that enforce the specifications
Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis.
Staphylococcus aureus is the most frequent causative organism of osteomyelitis. It is characterised by widespread bone loss and bone destruction. Previously we demonstrated that S. aureus protein A (SpA) is capable of binding to tumour necrosis factor receptor-1 expressed on pre-osteoblastic cells, which results in signal generation that leads to cell apoptosis resulting in bone loss. In the current report we demonstrate that upon S. aureus binding to osteoblasts it also inhibits de novo bone formation by preventing expression of key markers of osteoblast growth and division such as alkaline phosphatase, collagen type I, osteocalcin, osteopontin and osteocalcin. In addition, S. aureus induces secretion of soluble RANKL from osteoblasts which in turn recruits and activates the bone resorbing cells, osteoclasts. A strain of S. aureus defective in SpA failed to affect osteoblast growth or proliferation and most importantly failed to recruit or activate osteoclasts. These results suggest that S. aureus SpA binding to osteoblasts provides multiple coordinated signals that accounts for bone loss and bone destruction seen in osteomyelitis cases. A better understanding of the mechanisms through which S. aureus leads to bone infection may improve treatment or lead to the development of better therapeutic agents to treat this notoriously difficult disease
Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro.
OBJECTIVE: Staphylococcus aureus is the most frequent causative organism of infective endocarditis (IE) and is characterized by thrombus formation on a cardiac valve that can embolize to a distant site. Previously, we showed that S. aureus clumping factor A (ClfA) and fibronectin-binding protein A (FnBPA) can stimulate rapid platelet aggregation. METHODS AND RESULTS: In this study we investigate their relative roles in mediating aggregate formation under physiological shear conditions. Platelets failed to interact with immobilized wild-type S. aureus (Newman) at shear rates \u3c500\u3es(-1) but rapidly formed an aggregate at shear rates \u3e800 s(-1). Inactivation of the ClfA gene eliminated aggregate formation at any shear rate. Using surrogate hosts that do not interact with platelets bacteria overexpressing ClfA supported rapid aggregate formation under high shear with a similar profile to Newman whereas bacteria overexpressing FnBPA did not. Fibrinogen binding to ClfA was found to be essential for aggregate formation although fibrinogen-coated surfaces only allowed single-platelets to adhere under all shear conditions. Blockade of the platelet immunoglobulin receptor Fc gammaRIIa inhibited aggregate formation. CONCLUSIONS: Thus, fibrinogen and IgG binding to ClfA is essential for aggregate formation under arterial shear conditions and may explain why S. aureus is the major cause of IE
Host-Bacteria Interactions in Foreign Body Infections
Persistent staphylococcal infections are a major medical problem, especially when they occur on implanted materials or intravascular catheters. This review describes some of the recently discovered molecular mechanisms of Staphylococcus aureus attachment to host proteins coating biomedical implants. These interactions involve specific surface proteins, called bacterial adhesins, that recognize specific domains of host proteins deposited on indwelling devices, such as fibronectin, fibrinogen, or fibrin. Elucidation of molecular mechanisms of S aureus adhesion to the different host proteins may lead to the development of specific inhibitors blocking attachment of S aureus, which may decrease the risk of bacterial colonization of indwelling device
FbsA, a fibrinogen-binding protein from Streptococcus agalactiae, mediates platelet aggregation
The bacterium Streptococcus agalactiae is an etiologic agent in the pathogenesis of endocarditis in humans. FbsA, a fibrinogen-binding protein produced by this pathogen, is considered an important virulence factor. In the present study we provide evidence that S agalactiae clinical isolates bearing FbsA attach to fibrinogen and elicit a fibrinogen-dependent aggregation of platelets. Mutants of S agalactiae lacking the fbsA gene lost the ability to attach to fibrinogen and to aggregate platelets. Plasmid-mediated expression of fbsA restored the capability for fibrinogen binding and platelet aggregation in S agalactiae fbsA mutants, and allowed Lactococcus lactis to interact with fibrinogen and to aggregate human platelets. Moreover, a monoclonal anti-FbsA antibody inhibited bacterial adherence to fibrinogen and S agalactiae-induced platelet aggregation. Platelet aggregation was inhibited by aspirin, prostaglandin E(1,) the peptide RGDS, and the antibody abciximab, demonstrating the specificity of platelet aggregation by S agalactiae and indicating an involvement of integrin glycoprotein IIb/IIIa in the induction of platelet aggregation. Aggregation was also dependent on anti-FbsA IgG and could be inhibited by an antibody against the platelet FcgammaRIIA receptor. These findings indicate that FbsA is a crucial factor in S agalactiae-induced platelet aggregation and may therefore play an important role in S agalactiae-induced endocarditis
Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions.
Protein A (Spa) is a surface-associated protein of Staphylococcus aureus best known for its ability to bind to the Fc region of IgG. Spa also binds strongly to the Fab region of the immunoglobulins bearing V(H)3 heavy chains and to von Willebrand factor (vWF). Previous studies have suggested that the protein A-vWF interaction is important in S. aureus adherence to platelets under conditions of shear stress. We demonstrate that Spa expression is sufficient for adherence of bacteria to immobilized vWF under low fluid shear. The full length recombinant Ig-binding region of protein A, Spa-EDABC, fused to glutathione-S-transferase (GST), bound recombinant vWF in a dose-dependent and saturable fashion with half maximal binding of about 30 nm in immunosorbent assays. Full length-Spa did not bind recombinant vWF A3 domain but displayed binding to recombinant vWF domains A1 and D\u27-D3 (half maximal binding at 100 nm and 250 nm, respectively). Each recombinant protein A Ig-binding domain bound to the A1 domain in a similar manner to the full length-Spa molecule (half maximal binding 100 nm). Amino acid substitutions were introduced in the GST-SpaD protein at sites known to be involved in IgG Fc or in V(H)3 Fab binding. Mutants altered in residues that recognized IgG Fc but not those that recognized V(H)3 Fab had reduced binding to vWF A1 and D\u27-D3. This indicated that both vWF regions recognized a region on helices I and II that overlapped the IgG Fc binding site
Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care
International audienceThe European Polysaccharide Network of Excellence (EPNOE) is a research and education network connecting 16 academic and research institutions and a large number of companies with its focus on polysaccharide expertise development and polysaccharide-related research for innovation in business and industry. EPNOE has two main missions in the field of polysaccharide applications in materials, food, and pharmacy/medicine, which are to organise education in polysaccharide science and to perform basic and applied research for the development of new products derived from polysaccharides. In 2009, the EPNOE network prepared a research road map vision to 2020 focussed on polysaccharide use in material structuring, food and health, taking both research and education into consideration. The research road map was prepared from various social, political, industrial and scientific inputs coming from within and outside EPNOE: (1) results of four brain-storming sessions by EPNOE scientists and students, (2) individual contributions of EPNOE scientists and (3) individual contributions of scientists outside EPNOE through an internet review. The result is described in this article
Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a
Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function
International Space Station (ISS) Anomalies Trending Study
The NASA Engineering and Safety Center (NESC) set out to utilize data mining and trending techniques to review the anomaly history of the International Space Station (ISS) and provide tools for discipline experts not involved with the ISS Program to search anomaly data to aid in identification of areas that may warrant further investigation. Additionally, the assessment team aimed to develop an approach and skillset for integrating data sets, with the intent of providing an enriched data set for discipline experts to investigate that is easier to navigate, particularly in light of ISS aging and the plan to extend its life into the late 2020s. This document contains the Appendices to the Volume I report
- …
