
Miss Manners:
A Specialized Silicon Compiler

for Synchronizers

eueS-18S-8S

T. s. Balraj
M. 1. Foster

Department of Computer Science
Computer Science Building

Columbia University
New York City, 10027

Abstract
Miss Manners is a synchronizer generator that will produce the layout of a synchronizer given

a high-level description. A synchronizer generator is a type of specialized silicon compiler.
Synchronizer generators can greatly aid the design of systems that are structured as loosely­
coupled networks of autonomous subsystems. Chips that are structured in this way have reduced
communication requirements and greater tolerance for transient failures. We describe a language
for specifying synchronization requirements and a compiler for translating the language into
circuits that enforce the specifications.

1 Introduction
VLSI circuits that are structured as loosely-coupled networks of autonomous subsystems have

many advantages over monolithic systems. The major advantage is locality of communication.
By performing most of the computation within small areas of a chip, and communicating over
long distances only when absolutely necessary, VLSI systems can avoid many of the costs due to
long distance communications. Large chips that are not structured in this way, but are
monolithic, can require large volumes of data to be sent long distances, which requires the use of
large drivers and wires with large delays. The advantages of loosely-coupled circuits over
monolithic ones are similar to the advantages of distributed computing systems over
conventional multiprocessors. In addition to reduced communication requirements, the benefits
include increased reliability and extensibility.

Loosely-coupled VLSI circuits can be locally synchronous but globally self-timed. The
autonomous subcircuits of a loosely-coupled system can each have their own clocks, which can
be independent of each other. The occasional communications between autonomous subcircuits
can be self-timed, using stretchable clocks or other mechanisms [5, 17] to avoid synchronizer
failure. This design approach avoids clock skew and the other problems of clock distribution
that are ex.hibited by large clocked systems. At the same time it permits compact, easily
understood synchronous circuits to be used for most of the chip. VLSI systems designed in this
way can thus have faster-running clocks and be more reliable than strictly synchronous systems,
while being more compact and easier to design than strictly self-timed systems.

Although the use of loosely-coupled architectures is beneficial, it places some requirements on
VLSI circuits. One requirement is synchronization between subcircuits. Systems of this type
may require mutually ex.clusive access to communication channels, as well as more complex.
types of synchronization [6]. An "etiqueue authority" that enforces the synchronization
requirements must be included in the system. Furthermore, if the system has several subcircuits
with independent clocks, some means of communication between the subcircuits must be
devised that avoids synchronizer failure [4]. The etiquette authority must aid the subcircuits in
communicating, and should be capable of asynchronous communication with all other
subcircuits.

How should this etiquette authority behave? It interacts with the other subcircuits of the VLSI
system to ensure harmonious cooperation. The subcircuits must be well-mannered: when a

subcircuit wishes to perfonn some action (such as communication on a shared channel) chac
might be in violation of the synchronization requirements. it first asks for permission from the
etiquette authority. The subcircuit then waits until the etiquette authority gives it permission to
proceed. The etiquette authority must examine all actions that are proceeding and withhold its
permission until the requested action is safe.

The etiquette authority, or synchronizer, may be a complex circuit It must communicate
asynchronously with its client processes, and must keep track of synchronization conditions that
could be arbitrarily complicated. To make the loosely·coupled design style feasible in practice.
we must develop synchronizer generators for VLSI. These generators will accept the
specification of a synchronization structure as input and produce a layout of the required
synchronizer in the technology to be used for the chip. The use of synchronizer generators eases
the task of fulfilling the requirements of loosely-coupled VLSI systems. With a synchronizer
generator, circuits can be clesigned in this beneficial style without excessive design time.

Our synchronizer generator, Miss Manners, is a specialized silicon compiler, which is a
collection of cells and interconnection rules for generating layouts within a restricted application
area [8]. Specialized silicon compilers translate behavioral specifications into efficient circuits.
The use of behavioral specifications ensures that the compiler will be easy to use, while the
restriction of the application area of the compiler ensures that it can create efficient circuits.
Knowledge of an application area can be built into a specialized silicon compiler to aid in
constructing small, fast circuits; a more general compiler must rely on more general, less
effective optimization techniques.

Miss Manners uses path e:xpressiofl.S to specify the behavior of synchronizers. Path
expressions were originally proposed by Campbell and Habermann [3] for synchronization
within software systems. For example, the synchronization required for a file with two reader
processes and one writer process may be specified by the following multiple path expression:

path Rl + Wend
path R2 + Wend.

The flrst path prevents a read operation by process 1 from occurring at the same time as a write
operation; the second path similarly restricts process 2. The path expression does not restrict the
two reads from occurring simultaneously, but a read and write cannot occur at the same time.

Path expressions are useful in describing the synchronization required in cooperating circuits,
because they provide a combination of simplicity and expressive power. Because path
ex.pressions are closely related to regular expressions, their semantics are easily understood. At
the same time, they have the power to describe many of the synchronization needs of VLSI
circuits. For example, the readers and writers example above could describe a simple bus
arbitration scheme. As long as the synchronization required by a system is flnite-state, path
expressions are an appropriate description of it

Miss Manners translates a palh expression into a synchronizer circuit Some work on this
problem has been done previously. For example, Lauer and Campbell have shown how to

2

compile path expressions into Petri nets [11] and Patil as shown how to implement Petri nets
using an asynchronous logic array [15]. One method for compiling path expressions into circuits
would thus be to first convert the expression into a Petri net and then to implement the Petri net
as a circuit using an asynchronous logic array. However, this may produce a circuit that is much
larger than necessary. A multiple path expression consisting of k paths, each of length n, can
result in a Petri net with nk places if Lauer and Campbell's scheme is used. This plan may
therefore be infeasible for implementing a path expression with a large number of individual
paths.

Even for a path expression with a single path, this implementation may lead to a circuit that is
too large. Although the Petri net produced by Lauer and Campbell's translation is relatively
small in this case, the asynchronous logic array produced by Patil's implementation may be
large. The array for a Petri net with p places and t transitions has area proportional to pt,
regardless of the number of arcs in the net Since path expressions tend to produce nets with
sparse edge sets, this quadratic behavior may waste chip area.

Li and Lauer [13] have presented an implementation of path expressions in VLSI. Their
circuits have some drawbacks, however. First, the circuits are synchronous; asynchronous inputs
from the external world, or from distant parts of the chip, are not considered. Second, their
circuits use PLA's that can result in area O(n2) for a path expression of length n.

Miss Manners is based upon the translation method of Ananthararnan et ai. [1]. The circuits
described there have several advantages in loosely-coupled VLSI systems. First of all, the
circuits produced by our construction have area at most Oen log n + v2) for a multiple path
expression with y variables and total length n. Moreover, the circuits are asynchronous; events
do not have to be synchronized to a global clock. A self-timed arbiter is employed within the
circuit to resolve conflicts between competing events.

2 Describing Synchronizers
A synchronizer interacts with clients, which are other subcircuits of the system, to schedule

events. Events correspond to actions that the clients might take that could interfere with other
actions. The synchronizer will ensure that the events occur in a legal order. As shown in Figure
1, each event corresponds to two lines connected to the synchronizer. One line, REQ is
controlled by the client and read by a synchronizer; the other ACK is controlled by the
synchronizer and read by the clients. The synchronizer cooperates with its clients to ensure that
these request and acknowledge lines follow a four-cycle protocol:

1. A client raises REQe to indicate that it would like to proceed with event e.

2. The synchronizer raises ACKe to allow the client to proceed with event e.

3. The client lowers REQe to indicate that event e is finished.

4. The synchronizer lowers ACKe indicating that clients may make another request for
event e.

3

Therefore, to use the synchronizer, a client wishing to perform event e waits for ACKe to be
lowered, then raises REQ~ to request permission. When ACKe is raised, the client proceeds with
event e, then lowers REQeo This four-cycle protocol eliminates the need for a global clock.

FlEO a

AO< a

FlEO b

AO< b

~

•
•
•

...

Synchronizer

Figure 1: A synchronizer

In the description of a synchronizer to Miss Manners, events are declared in a statement of the
form:

EVENT start, transmit, finish
This signals to Miss Manners that start, transmit, and flnish are events, and that a request­
acknowledge pair should be allocated for each one.

To describe the synchronization of events they can be combined into path expressions. We
describe the syntax and give an intuitive definition of the semantics of a path expression. More
rigorous defInitions are given by several authors [1, 11]. A simple path expression, or simply
path, is a regular expression with an outermost Kleene star. The operators that are permitted in
the regular expression are the Kleene star ("*"), sequencing (indicated by juxtaposition), and
union ("+") operators. Operands in the expression are event names for the events to be
synchronized. The outermost Kleene star is represented by the keywords PATH. .. END, which
also delimit the simple path expression. For example, a * would be represented by PATH a
END.

A path specifies the sequencing of events that appear within it in two ways. First, no two
events appearing in a path may be concurrent The time intervals during which the events occur
may not overlap. The expression PATH a + b END thus specifies that events a and b may
not occur at the same time. Second, the sequence of event occurrences for events that appear in
a path must be a preflx of a string that is in the regular language specified by that path. Thus, the
path PATH a b END indicates that occurrences of a must alternate with occurrences of band
that a and b cannot occur together.

To permit a more compact notation for some commonly occurring path expressions, we have
added an additional construct called a flag that can be used in simple paths. Flags fulfill the
function of state labels in other notations for regular languages [19], but seem to be more
convenient within the context of path expressions. A flag can be thought of as an event that
occurs inside the synchronizer; flags can be set and checked within a path. For example, the
path:

4

Ev~NT store, fetch
FLAG fO", fl, f2
?ATH (fO: store fl")

+ fl: (store f2" + fetch fO")
+ (f2: fetch fl") END

represents an up-down counter that might be used to synchronize access to a bounded buffer of
size 2. The statement:

FLAG fO", fl, f2

indicates that fO is a flag that is initially set, while fl and f2 are flags that are initially cleared.
A construction such as fO: that appears in a sequence prevents events that follow it in the
sequence from occurring unless the flag fO is set. If fO is set, it will be cleared by the fO:
construction, and the tail of the sequence will be permitted. The construction fO" sets flag f o.

Flags permit transfer of control in the same way that state labels do. Setting a flag with the
"" " operator corresponds to a go to, while checking a flag with ":" corresponds to a label. We
prefer flags to state labels, however, because they permit more flexibility. One advantage is the
ability to delay transfers of control. For example, if a subcircuit wants to alternately read and
write from a bus that has a protocol for bus acquisition and freeing, the path for that subcircuit
could look like this:

FLAG rlast", wlast
PATH rlast: getbus write wlast" freebus +

wlast: getbus read rlast" freebus END

In this path, the flags are set before the bus is freed. The ability to indicate a state change near
the action that causes it rather than at the end of a long sequence can make paths more readable.

A multiple path expression is a set of simple paths. Each of the paths that make up a multiple
path expression constrains the occurrences of events to a regular language. In addition, if an
event appears in two separate paths, the event must satisfy each of the paths separately. Thus, in
the multiple path expression:

PATH a bEND
PATH c a END

event a cannot occur until c has occurred, and two occurrences of event a must be separated by
precisely one occurrence of b and one of c.

We end the description of oUI path expression language with a complete example. This path
expression enforces mutual exclusion of two subcircuits, A and B, on a bus. Subcircuit A has
priority in that it can I 'reserve" the bus between transmissions and prevent subcircuit B from
using it.

5

E'VENT a, b
/* A has the bus du=ing event a */
/* B during event b */

Sv~NT areserve, bcheck
/* These are for priority */

PATH a + bEND
/* mutual exclusion */

PATH bcheck bEND
/* b must check before grabbing the bus */

PATH areserve + bcheck END
/* if a is reserving, b can't check */ .

This path expression contains three simple paths. The flrst one prevents both A and B from
using the bus at the same time. The second and third paths implement the priority scheme: B
must check before it uses the bus, and A can prevent B' s checking event from completing by
reserving the bus.

Path expressions can describe many types of synchronization requirements. The path
expression above describes one type of synchronization that might be used in a loosely-coupled
system; other path expressions for different forms of synchronization have been presented by
other researchers [3, 10]. The simplicity and expressiveness of path expressions make them an
obvious candidate for describing synchronizers to a specialized silicon compiler.

3 Building Synchronizers
This section describes the overall structure of the synchronizers generated by Miss Manners.

The synchronizers are based upon the design reported by Anantharaman et ai. [1], but have been
modifled to reduce the number of circuit elements (Figure 2). Three subcircuits are shown in the
diagram: the event handlers, the arbiter. and the sequencers. The event handlers are constructed
from Muller C elements. inverters. and NOR gates, as shown in the diagram. The arbiter in
Figure 2 performs mutual exclusion for events that occur in the same simple path. Signals to the
arbiter are asserted low, so it ensures that at most one of the OUT signals for a mutually exclusive
set of events is low, no matter how many of the IN signals are low. Finally, each of the
sequencers shown in Figure 2 ensures that the sequence of events satisfles one of the simple
paths; there is one sequencer for each simple path in a multiple path expression.

The interaction between the event handlers and sequencers is rather complex. For each event e
that appears in a simple path, the corresponding sequencer has three connections: a request TRe,

an acknowledge TAe. and a disable DISe• The TAe lines from all sequencers for paths containing
event e are fed into the Muller C gate for event e. The DISe lines from these sequencers are fed
into the large Ar-I1) gate for event e. Event handlers communicate with sequencers by means of a
four cycle protocol on TRIT A. similar to the one on REQI ACK. The TRe signal tells a sequencer to
update its state because of the occurrence of event e. The TAe signal indicates that the sequencer
is flnished updating. When both TR and TA are low, the DIS lines indicate which events violate

6

SEOUENCER,

~"

A
R
B
I
T

~QZ
IN Z E CA.1T

Z

R

Figure 2: A synchronizer circuit

the simple path.

We now describe how the circuit works. A more complete description of a similar circuit.
with a proof of correctness, is given elsewhere [1]. If a client raises REQe at a time when no
sequencers are asserting DlSe, INe is lowered. Eventually, the arbiter will decide in favor of INe•

lowering OUTe and raising TRe. Each sequencer that has e in its path fmds TRe high, and some
time later raises TAe. When all sequencers have raised TAe the output of the C gate goes high,
raising ACKe and latching INe low. When the client signals completion of e by lowering REQe•

TRe will be lowered. Each sequencer then flnds TRe low, and lowers TAe; when all sequencers
are done, ACKe and INe are raised, clearing the arbiter and ending the event.

Two pans of the circuit in Figure 2 remain to be described: the sequencer and the arbiter. We
begin with the sequencer, which contains a recognizer similar to the one described by Floyd and
Ullman [7] together with a controller that generates the T A signals. A realization for the
controller is shown in Figure 3. Along with the TA signals, it generates two timing signals for
the recognizer, called Start and End. Start is true whenever at least one TR is on and no TA is
on, while End is true whenever at least one TA is on and no TR is on. The realization in Figure
3 uses a delay element to generate the control signals, but a completely self-timed controller can
be built if it is needed. The delay in Figure 3 must be long enough so that all of the actions
started by TR can fmish. An upper bound on the delay can be computed from the rest of the
layout. The element labelled M. E. is a mutual exclusion element that guarantees that Start and

7

End are never high at the same time. Its construction is given by Seitz [17].

Start

TR. TA, TAli

Figure 3: A controller for a simple path sequencer

A recognizer is made up of several types of cells, corresponding to the characters that can
appear in a simple path. One type of cell, shown in Figure 4, corresponds to event names. The
other types of cells correspond to operators, and to the setting and checking of flags. The ENE

and RES signals in Figure 4 are used within the recognizer to keep track of which events in the
path have occurred and which are legal. The ENE signal is true if and only if the event
corresponding to the cell can occur next in the path. The RES signal is set to true after the event
occurs.

ENS

From olher

cells 101'.

TR • Start p

(SomeTR

and N) TA)

Figure 4:

DIS.

1-_-10 latch RES

End p

(Some TA
and N) TR)

Cell for event e

8

The two latches in Figure 4 are clocked by the signals Start and End. They control the flow
of E.lI.ffi and RES signals so that the event cell propagates a 1 from ENB to RES only if event e
occurs. When this cell is used in a recognizer for a simple path, the ENB input will be true if and
only if event e is pennitted by the path. Thus, if ENB is true it negates DIS for the path, as shown
in the figure. When a request m is made the output of the AND gate is loaded into the leftmost
latch. If the request is me this output is 1; otherwise it is O. In either case the output of the A,J.'ID

gate is propagated to RES through the second latch when m is lowered.

A recognizer is constructed from these cells by connecting the RES output of some of the cells
to the ENB input of others. For example, a recognizer for the path PATH abc END is simply
a cascade of three event cells. The cells for the operators + and * route the RES and ENB signals
from their operands so that the recognizer performs the correct function. Fuller details on these
cells can be found in the references [1,8,9].

There are three types of cells related to flags. Two of these, shown in Figure 5, are the flag
operator cells corresponding to the setting and checking of flags. The third cell, shown in Figure
6, contains the flag's state.

~ --L.
~ --l-t

~ l.g nt ca I I (...)

Figure 5: Rag operator cells

Like the other operator cells, the flag operator cells are simple combinatorial logic circuits that
are connected to the rest of the sequencer by ENB and RES lines. However, they are also
connected to the flag-state cells by SET, RESET and FLAG lines. The flag-set cell raises the SET

line when its ~"l'B line is raised. It then raises RES when its FLAG input goes high. The flag­
check cell propagates a 1 from ENB to RES only if the flag is set; it also raises the RESET line.

The flag-state cell is a one-bit memory element which stores the status of the flag. The bit can
be set asynchronously, but is reset only on the End signal following the raising of RESET. This
ensures that any event enabled by the checking of the flag is completed before the flag is reset.
The SET lines from the various flag-set cells corresponding to a flag are ORed to give the set
signal for the memory element. The RESET line from the corresponding flag-check element is
clocked by the End signal to give the reset signal for the memory element The status of the flag
is brought out on the FLAG line.

9

~f---ID

Figure 6: Cell for flag!

The sequencer is fonned by combining a controller and recognizer as shown in Figure 7.
Using tree layout techniques of Leiserson [12], the recognizer for an expression of length n
requires only O(n log n) area.

TR',

. Start

End

-
RES and

I ri I II 1"1 ENe

• • • Cilla

1

Controller

Figure 7: The floorplan for a sequencer

The other circuit from Figure 2 that must be implemented is the arbiter. This circuit selects a
single event from a mutually exclusive set of requests. If the IN signals from a set of conflicting
events are low, the arbiter ensures that only one of the OUT signals from that set is low. The
arbiter should be fair if possible, so that any request that remains asserted will eventually be
selected.

Since mutual exclusion is the only condition to be enforced, the arbitration function can be
represented by a conflict graph in which each event corresponds to a vertex and an edge is drawn
between two vertices if their events conflict A single path corresponds to a conflict graph which
is the complete graph on all of its events. The conflict graph for a multiple path expression is
then just an overlapping set of these cliques, Figure 8 shows the conflict graph of a multiple path
expression. The arbiter must select a set of vertices in the path expression that correspond to

10

requested events. No two vertices in the set selected may be connected by an edge.

B c

A
~_~ __ -.F

path (A + B + 0) end

path (B:(C + O):E) end

path (E + F + G) end

Figure 8: A path expression and its conflict graph

If the conflict graph is simple, so is the arbiter. For example, Seitz [16] has shown how to
build an arbiter for the path expression path A + B end. This arbiter simply ensures that only
one of A or B is enabled, and can be constructed using an interlock element as shown in Figure
9. This interlock has been fabricated and used in practical circuits [14].

~19h thl'eshold

but",.,

Figure 9: An interlock element

In this interlock, signals are asserted low so that if neither element is requesting then both
inputs will be high. Suppose that this is the case, and that both VI and v2 are near 0 volts. Then
both outputs will be high. If Ain is lowered at this point then v 1 goes high and Aout goes low,
signaling that A may proceed. Once this happens, Bout remains high for as long as Ain is kept
low, so that B cannot occur until A is finished. Thus, the interlock enforces mutual exclusion as
long as the inputs change one at a time.

If the inputs Ain and Bin change at nearly the same time, then the cross-coupled NOR gates
enter a metastable state which persists for an unpredictable period of time. In this case the
outputs of the NOR gates cannot be used directly as outputs of the interlock. The high-threshold
buffers prevent false outputs during this metastable state.

The synchronizers produced by Miss Manners use an arbiter that extends Seitz's idea by
generalizing it to any conflict graph. Each vertex in the graph corresponds to a NOR gate, and
each edge corresponds to a cross-coupling of two NOR gates. An arbiter of this sort can be
compactly laid out as a Weinberger array [20]. The NOR gates are laid out horizontally, with
routing tracks in the array running vertically. Each track carries the output of a NOR gate to the
inputs of the gates with which it is cross-coupled. In some cases a track may be able to carry

11

more than one output signal. The outputs of the array pass through Schmitt triggers whose
trigger points are set well above the logic threshold of the NOR gates.

Miss Manners as currently implemented consists of three phases. The fIrst takes the
synchronizer description in the path expression language described earlier and produces a parse
tree and block diagram. The second takes the parse tree and block diagram as input and produces
a detailed floor-plan. The third produces an NMOS layout from the floor-plan.

Miss Manners is intended as a real design tool, which we hope will be widely used. If
designers are to want to use it, Miss Manners must produce circuits that are not significantly
larger or slower than those that can be produced by hand. A few simple modifications to the
basic compilation scheme described above can reduce the size of circuits, while at the same time
increasing their speed.

One simple optimization is the compaction of the arbiter Weinberger array. Since one NOR

gate is needed for each event, the number of NOR gates in the array is fixed, but the number of
tracks that are used may vary. Traditionally, the number of tracks in a Weinberger array is
minimized by permuting the NOR gates [2]. Finding the smallest array is an NP-complete
problem. Our problem, fortunately or not, is more restricted and hence simpler. Because Miss
Manners produces parts of larger circuits, the spatial ordering of the REQ and ACK lines may
affect the wiring outside of the synchronizer. Miss Manners therefore does not change this
ordering. A designer can specify the ordering of these lines in the final layout: the order in
which events are declared in EVENT statements is the tOJrto-bottom order of their interface
wires. Since the order of events dictates the order of NOR gates in the arbiter, the compiler
cannot pennute the gates. Thus, the only layout optimization that can be done is to pack
interconnections into as few tracks as possible. For example, Figure 10 shows a badly laid-out
arbiter, while Figure 11 shows one that is well laid out The horizontal lines in the fIgures
represent NOR gates. The vertical lines represent tracks, with gate outputs represented by circles
and inputs represented by boxes.

a------~~----------

b---r---T--<r-tp----
c ------~~-r-+-----­
d------t--~;--<?"-
e __________ ~-O~~--

+---;>--,-----t--r-­
g--~I----6--_+--t--

h---------o--e--

Figure 10: A badly laid-out arbiter

12

a------~~~-----­

b ---+--+----9--9-­

C ------~~-+-+-­

d ----o--S--I---I---

9-----+--+--&--0-
f ---+-+--o--s--

9 ---t--r--;!--o...­

h ----&--0-----

Figure 11: A well laid-out arbiter

The restricted layout problem, with no pennutation of columns, can be solved optimally by a
greedy algorithm. To layout a set of edges, sort them so that their topmost endpoints are in
descending order. All edges with an endpoint in the topmost channel should come first, followed
by all edges with an endpoint in the channel second from the top, and so on. Remove edges from
the sorted list in order and place each edge in the leftmost track in which it fits. This rlIst-fit
algorithm will use the minirnalnumber of tracks to layout the set of edges.

To prove that this greedy algorithm fmds an optimal layout, let a be the greedy layout and
consider an optimal layout L of the set of edges. Sort the edges as in the greedy algorithm,
remove them from the list and order, and place them as in layout L. Let e be the flrst edge whose
placement differs in a and L; suppose it is in track i in a and trackj in L. Place e in track i, and
continue performing the optimal layout with tracks i and j switched. Clearly this can be done,
since:

• only tracks i and j are affected;

• any edge that L placed in track i can now be placed in track j since j's empty space
includes the empty space that i had;

• any edge that L put in track j can now be put in track i since i has exactly the same
empty space thatj did.

The process of moving edge e and switching tracks i andj thus produces a new optimal layout Ll
whose first difference from a is after edge e. Continuing this process with subsequent differing
edges will eventually produce layout a, showing that a is optimal.

The arbiter is not the only structure in a synchronizer that needs to be optimized. Some of the
sequencers may be superfluous, and these can be removed. Some paths, such as PATH a + b

END, specify only mutual exclusion; no sequence is ruled out by such paths. The sequencer
corresponding to paths such as this never disables an input, and so can be eliminated without
affecting the function of the synchronizer.

This section has summarized a scheme for compiling a path expression into a layout and has

13

outlined a few of the optimizations that are perfonned by Miss Manners. These optimizations
are possible because Miss Manners is a specialized silicon compiler; the specialized knowledge
of synchronizers that is needed for optimal layout can be encoded into the program.
Optimizations such as these are required in any compiler that is to produce layouts that are as
efficient as those designed by hand.

4 Status and Plans
A first version of Miss Manners is running at Columbia. It accepts a path expression written

in the language described in Section 2 and produces the floorplan of a synchronizer for that
expression. The optimizations described in Section 3 are applied to produce a compact
floorplan. Using standard cells, an NMOS layout for the entire synchronizer is produced.

We foresee several directions for future work on compilers of this type. Perhaps the most
obvious is the design of primitive cells in CMOS so that Miss Manners can produce CMOS
circuits. We also intend to incorporate other layout optimizations; for example, alternative
strategies may produce more compact layouts of sequencers [18]. Another area where more
work is needed is the design of arbiters. The cross-coupled NOR gates proposed here can starve
clients under some circumstances [1] and may require too much time to resolve metastability.
Experience will show whether these problems arise in practice; if they do, other arbiter designs
will be tried.

Miss Manners is ready for use by designers of loosely-coupled systems; future developments
will increase its usefulness. We encourage designers to make use of this tool. It produces
efficient circuits from simple behavioral descriptions. Specialized silicon compilers of this type

can ease the design of efficient circuits and help fulfill the promise of VLSI.

14

References

[1] Ananthararnan, T. S., E. M. Clarke, M. 1. Foster, and B. Mishra.
Compiling Path Expressions into VLSI Circuits.
In Proceedings of the 12' th Symposium on Principles of Programming Languages.

ACM, January, 1985.
An expanded version of this paper will appear in Distributed Computing.

[2] Asano, T.
An Optimum Gate Placement Algorithm for MOS One-Dimensional Arrays.
Journal of Digital Systems VI: 1-27, 1981.

[3] Campbell, R. H. and A. N. Habermann.
The Specification of Process Synchronization by Path Expressions.
In G. Goos and 1. Hartmanis (editor), Lecture Notes in Computer Science, Volume 16,

pages 89-102. Springer-Verlag, 1974.

[4] Chaney, T. J. and C. E. Molner.
Anomalous Behavior of Synchronizer and Arbiter Circuits.
IEEE Transactions on Computers :421-422, April, 1973.

[5] Chapiro, D. M.
Globally-Asynchronous Locally-Synchronous Systems.
PhD thesis, Stanford, October, 1984.

[6] Dijkstra, E. W.
Cooperating Sequential Processes.
In Genuys (editor), Programming Languages, pages 43-112. Academic Press, New York,

1968.

[7] Floyd, R. W. and Ullman, J. D.
The Compilation of Regular Expressions into Integrated Circuits.
Journal of the Association for Computing Machinery 29(3):603-622, July, 1982.

[8] Foster, M. 1.
Specialized Silicon Compilers for Language Recognition.
PhD thesis, CMU, July, 1984.
This thesis will appear as a chapter in VLSI Electronics: Microstructure Science, Volume

14, edited by N. Einspruch and published by Academic Press.

[9] Foster, M 1. and Kung, H. T.
Recognize Regular Languages with Programmable Building-Blocks.
Journal of Digital Systems VI(4):323-332, Winter, 1982.

[10] Kolstad, R. B. and R. H. Campbell.
Path Pascal User Manual
Department of Computer Science, University of Illinois, Urbana, ill. 61801, 1980.

[11] Lauer, P. E. and Campbell, R. H.
Formal Semantics of a Class of High-Level Primitives for Coordinating Concurrent

Processes.
Acta Informatica 5:297-332, June 5, 1974.

15

[12] Leiserson, C.E.
Area-Efficient VLSI Computan"on.
PhD thesis, Carnegie-Mellon University, 1981.

[13] Li, W. and P. E. Lauer.
A VLSIImplemelUan"on o/Cosy.
Technical Report ASMl121, Computing Laboratory, The University of Newcastle Upon

Tyne, January, 1984.

[14] Lyon, R. F. and M. P. Haeberli.
Designing and Testing the- Optical Mouse.
VLSI Design ll(1):20-30, January/February, 1982.

[15J Patti, Suhas S.
An Asynchronous Logic Array.
MAC TECHNICAL MEMORANDUM 62, Massachusetts Institute of Technology, May,

1975.

[16] Seitz, C. L.
Ideas About Arbiters.
LAMBDA First Quarter. 10-14, 1980.

[17] Seitz, C.
System Tuning.
Chapter 7 of "Introduction to VLSI Systems" by Mead and Conway, Addison Wesley,

1982. .

[18] Trickey, H. W.
Good Layouts for Pattern Recognizers.
IEEE Transactions on Computers C-31(6):514-520, June, 1982.

[19] Ullman, J. D.
Combining State Machines and Regular Expresswns/or Automatic Synthesis o/VLSI

Circuits.
Technical Report CS-82-927, Stanford University, September, 1982.

[20] Weinberger, A.
Large Scale Integration of MOS Complex Logic: A Layout Method.
IEEE Journal o/Solid State Circuits SC 2, February, 1967.

16

