1,790 research outputs found

    Why did Paul cite Habakkuk 2:4b?

    Get PDF
    One of the most perplexing uses of the Old Testament in the New is Paul’s quotation of ‘the one who is righteous will live by faith’ to support his view that: divine righteousness is revealed through faith (Rom 1:17); no one is justified before God by the law (Gal 3:11); and no one is justified by the works of the law but through faith in Jesus Christ (Gal 2:16). Why did Paul quote Hab 2:4b, since this half-verse is not ostensibly about judgment and salvation? In this article, I show that Paul’s selection is explicable when it is realized that there was a Jewish tradition, as reflected in Pesher Habakkuk (1QpHab), which interpreted righteousness and living by faith as salvation for the righteous and judgment for the wicked.http://journals.sagepub.com/home/exthj2023Old Testament Studie

    How was the Canon formed?

    Get PDF
    The Hebrew Bible or Old Testament did not drop down from heaven, as is sometimes believed. It is widely agreed that the canon is the construct of faith communities. But what was the process that led to the formation of the canon? This article discusses what we know about the formation of the canon, addressing assumptions that different readers might have about what constitutes ‘the Bible’. It will show that the Jewish Tanak and Protestant Old Testament have the same collection of books and it is the canon of Pharisaic-Rabbinic Judaism. It was not, and is not, the canon of other faith communities that considered different lists of books as authoritative.http://journals.sagepub.com/home/exthj2023Old Testament Studie

    Implicit criticism of scriptures and Josephus’ rewritten Bible

    Get PDF

    In vivo Large-Scale Cortical Mapping Using Channelrhodopsin-2 Stimulation in Transgenic Mice Reveals Asymmetric and Reciprocal Relationships between Cortical Areas

    Get PDF
    We have mapped intracortical activity in vivo independent of sensory input using arbitrary point channelrhodopsin-2 (ChR2) stimulation and regional voltage sensitive dye imaging in B6.Cg-Tg (Thy1-COP4/EYFP)18Gfng/J transgenic mice. Photostimulation of subsets of deep layer pyramidal neurons within forelimb, barrel, or visual primary sensory cortex led to downstream cortical maps that were dependent on synaptic transmission and were similar to peripheral sensory stimulation. ChR2-evoked maps confirmed homotopic connections between hemispheres and intracortical sensory and motor cortex connections. This ability of optogentically activated subpopulations of neurons to drive appropriate downstream maps suggests that mechanisms exist to allow prototypical cortical maps to self-assemble from the stimulation of neuronal subsets. Using this principle of map self-assembly, we employed ChR2 point stimulation to map connections between cortical areas that are not selectively activated by peripheral sensory stimulation or behavior. Representing the functional cortical regions as network nodes, we identified asymmetrical connection weights in individual nodes and identified the parietal association area as a network hub. Furthermore, we found that the strength of reciprocal intracortical connections between primary and secondary sensory areas are unequal, with connections from primary to secondary sensory areas being stronger than the reciprocal

    Loss-resilient photonic entanglement swapping using optical hybrid states

    Get PDF
    We propose a scheme of loss-resilient entanglement swapping between two distant parties via an imperfect optical channel. In this scheme, two copies of hybrid entangled states are prepared and the continuous-variable parts propagate through lossy media. In order to perform successful entanglement swapping, several different measurement schemes are considered for the continuous-variable parts such as single-photon detection for ideal cases and a homodyne detection for practical cases. We find that the entanglement swapping using hybrid states with small amplitudes offers larger entanglement than the discrete-variable entanglement swapping in the presence of large losses. Remarkably, this hybrid scheme still offers excellent robustness of entanglement to the detection inefficiency. Thus, the proposed scheme could be used for the practical quantum key distribution in hybrid optical states under photon losses

    Fenebrutinib in H1 antihistamine-refractory chronic spontaneous urticaria: a randomized phase 2 trial

    Get PDF
    Bruton’s tyrosine kinase (BTK) is crucial for FcεRI-mediated mast cell activation and essential for autoantibody production by B cells in chronic spontaneous urticaria (CSU). Fenebrutinib, an orally administered, potent, highly selective, reversible BTK inhibitor, may be effective in CSU. This double-blind, placebo-controlled, phase 2 trial (EudraCT ID 2016-004624-35) randomized 93 adults with antihistamine-refractory CSU to 50 mg daily, 150 mg daily and 200 mg twice daily of fenebrutinib or placebo for 8 weeks. The primary end point was change from baseline in urticaria activity score over 7 d (UAS7) at week 8. Secondary end points were the change from baseline in UAS7 at week 4 and the proportion of patients well-controlled (UAS7 ≤ 6) at week 8. Fenebrutinib efficacy in patients with type IIb autoimmunity and effects on IgG-anti-FcεRI were exploratory end points. Safety was also evaluated. The primary end point was met, with dose-dependent improvements in UAS7 at week 8 occurring at 200 mg twice daily and 150 mg daily, but not at 50 mg daily of fenebrutinib versus placebo. Asymptomatic, reversible grade 2 and 3 liver transaminase elevations occurred in the fenebrutinib 150 mg daily and 200 mg twice daily groups (2 patients each). Fenebrutinib diminished disease activity in patients with antihistamine-refractory CSU, including more patients with refractory type IIb autoimmunity. These results support the potential use of BTK inhibition in antihistamine-refractory CSU

    Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass Burning Emissions

    Get PDF
    Biomass burning is the largest combustion-related source of volatile organic compounds (VOCs) to the atmosphere. We describe the development of a state-of-the-science model to simulate the photochemical formation of secondary organic aerosol (SOA) from biomass-burning emissions observed in dry (RH <20%) environmental chamber experiments. The modeling is supported by (i) new oxidation chamber measurements, (ii) detailed concurrent measurements of SOA precursors in biomass-burning emissions, and (iii) development of SOA parameters for heterocyclic and oxygenated aromatic compounds based on historical chamber experiments. We find that oxygenated aromatic compounds, including phenols and methoxyphenols, account for slightly less than 60% of the SOA formed and help our model explain the variability in the organic aerosol mass (R² = 0.68) and O/C (R² = 0.69) enhancement ratios observed across 11 chamber experiments. Despite abundant emissions, heterocyclic compounds that included furans contribute to ∼20% of the total SOA. The use of pyrolysis-temperature-based or averaged emission profiles to represent SOA precursors, rather than those specific to each fire, provide similar results to within 20%. Our findings demonstrate the necessity of accounting for oxygenated aromatics from biomass-burning emissions and their SOA formation in chemical mechanisms

    Characteristics of Tropical Cyclones in High-Resolution Models of the Present Climate

    Get PDF
    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) in two types of experiments, using a climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models
    corecore