118 research outputs found

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M⊙(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    Two Stellar Components in the Halo of the Milky Way

    Full text link
    The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, which can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components -- an inner and an outer halo -- that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.Comment: Two stand-alone files in manuscript, concatenated together. The first is for the main paper, the second for supplementary information. The version is consistent with the version published in Natur

    The NANOGrav 12.5-Year Data Set: Dispersion Measure Mis-Estimation with Varying Bandwidths

    Full text link
    Noise characterization for pulsar-timing applications accounts for interstellar dispersion by assuming a known frequency-dependence of the delay it introduces in the times of arrival (TOAs). However, calculations of this delay suffer from mis-estimations due to other chromatic effects in the observations. The precision in modeling dispersion is dependent on the observed bandwidth. In this work, we calculate the offsets in infinite-frequency TOAs due to mis-estimations in the modeling of dispersion when using varying bandwidths at the Green Bank Telescope. We use a set of broadband observations of PSR J1643-1224, a pulsar with an excess of chromatic noise in its timing residuals. We artificially restricted these observations to a narrowband frequency range, then used both data sets to calculate residuals with a timing model that does not include short-scale dispersion variations. By fitting the resulting residuals to a dispersion model, and comparing the ensuing fitted parameters, we quantify the dispersion mis-estimations. Moreover, by calculating the autocovariance function of the parameters we obtained a characteristic timescale over which the dispersion mis-estimations are correlated. For PSR J1643-1224, which has one of the highest dispersion measures (DM) in the NANOGrav pulsar timing array, we find that the infinite-frequency TOAs suffer from a systematic offset of ~22 microseconds due to DM mis-estimations, with correlations over ~1 month. For lower-DM pulsars, the offset is ~7 microseconds. This error quantification can be used to provide more robust noise modeling in NANOGrav's data, thereby increasing sensitivity and improving parameter estimation in gravitational wave searches.Comment: 15 pages, 7 figure

    The NANOGrav 12.5-Year Data Set:Dispersion Measure Misestimations with Varying Bandwidths

    Get PDF
    Noise characterization for pulsar-timing applications accounts for interstellar dispersion by assuming a known frequency dependence of the delay it introduces in the times of arrival (TOAs). However, calculations of this delay suffer from misestimations due to other chromatic effects in the observations. The precision in modeling dispersion is dependent on the observed bandwidth. In this work, we calculate the offsets in infinite-frequency TOAs due to misestimations in the modeling of dispersion when using varying bandwidths at the Green Bank Telescope. We use a set of broadband observations of PSR J1643−1224, a pulsar with unusual chromatic timing behavior. We artificially restricted these observations to a narrowband frequency range, then used both the broad- and narrowband data sets to calculate residuals with a timing model that does not account for time variations in the dispersion. By fitting the resulting residuals to a dispersion model and comparing the fits, we quantify the error introduced in the timing parameters due to using a reduced frequency range. Moreover, by calculating the autocovariance function of the parameters, we obtained a characteristic timescale over which the dispersion misestimates are correlated. For PSR J1643−1224, which has one of the highest dispersion measures (DM) in the NANOGrav pulsar timing array, we find that the infinite-frequency TOAs suffer from a systematic offset of ∼22 μs due to incomplete frequency sampling, with correlations over about one month. For lower-DM pulsars, the offset is ∼7 μs. This error quantification can be used to provide more robust noise modeling in the NANOGrav data, thereby increasing the sensitivity and improving the parameter estimation in gravitational wave searches

    An Unusual Pulse Shape Change Event in PSR J1713+0747 Observed with the Green Bank Telescope and CHIME

    Get PDF
    The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between 2021 April 16 and 17 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multifrequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment and the 100 m Green Bank Telescope in a 3 yr period encompassing the shape change event, between 2020 February and 2023 February. As of 2023 February, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying time-of-arrival residuals display a strong nonmonotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency, ν) nor a change in dispersion measure alone (which would produce a delay proportional to ν−2). However, it does bear some resemblance to the two previous "chromatic timing events" observed in J1713+0747, as well as to a similar event observed in PSR J1643−1224 in 2015

    An unusual pulse shape change event in PSR J1713+0747 observed with the Green Bank Telescope and CHIME

    Full text link
    The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between April 16 and 17, 2021 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multi-frequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the 100-meter Green Bank Telescope (GBT) in a three-year period encompassing the shape change event, between February 2020 and February 2023. As of February 2023, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying TOA residuals display a strong non-monotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency, ν\nu) nor a change in dispersion measure (DM) alone (which would produce a delay proportional to ν−2\nu^{-2}). However, it does bear some resemblance to the two previous "chromatic timing events" observed in J1713+0747 (Demorest et al. 2013; Lam et al. 2016), as well as to a similar event observed in PSR J1643-1224 in 2015 (Shannon et al. 2016).Comment: 19 pages, 8 figures. Submitted to ApJ. Data available at https://doi.org/10.5281/zenodo.723645

    Chemical Tagging in the Sdss-Iii/Apogee Survey: New Identifications of Halo Stars with Globular Cluster Origins

    Get PDF
    We present new identifications of five red giant stars in the Galactic halo with chemical abundance patterns that indicate they originally formed in globular clusters. Using data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Survey available through Sloan Digital Sky Survey (SDSS) Data Release 12, we first identify likely halo giants, and then search those for the well-known chemical tags associated with globular clusters, specifically enrichment in nitrogen and aluminum. We find that 2% of the halo giants in our sample have this chemical signature, in agreement with previous results. Following the interpretation in our previous work on this topic, this would imply that at least 13% of halo stars originally formed in globular clusters. Recent developments in the theoretical understanding of globular cluster formation raise questions about that interpretation, and we concede the possibility that these migrants represent a small fraction of the halo field. There are roughly as many stars with the chemical tags of globular clusters in the halo field as there are in globular clusters, whether or not they are accompanied by a much larger chemically untaggable population of former globular cluster stars

    Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays:Application to 3C 66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and emit low-frequency gravitational radiation in the process. In this paper, we consider the galaxy 3C 66B, which was used as the target of the first multimessenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational-wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C 66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C 66B to less than (1.65 ± 0.02) × 109 M o˙ using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data over "blind"pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences
    • …
    corecore