12 research outputs found

    High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy

    Get PDF
    Purpose: Vertebral fractures due to osteoporosis are a potential complication of childhood acute lymphoblastic leukemia (ALL). To date, the incidence of vertebral fractures during ALL treatment has not been reported. Patient and Methods: We prospectively evaluated 155 children with ALL during the first 12 months of leukemia therapy. Lateral thoracolumbar spine radiographs were obtained at baseline and 12 months. Vertebral bodies were assessed for incident vertebral fractures using the Genant semiquantitative method, and relevant clinical indices such as spine bone mineral density (BMD), back pain, and the presence of vertebral fractures at baseline were analyzed for association with incident vertebral fractures. Results: Of the 155 children, 25 (16%; 95% CI, 11% to 23%) had a total of 61 incident vertebral fractures, of which 32 (52%) were moderate or severe. Thirteen (52%) of the 25 children with incident vertebral fractures also had fractures at baseline. Vertebral fractures at baseline increased the odds of an incident fracture at 12 months by an odds ratio of 7.3 (95% CI, 2.3 to 23.1; P = .001). In addition, for every one standard deviation reduction in spine BMD Z-score at baseline, there was 1.8-fold increased odds of incident vertebral fracture at 12 months (95% CI, 1.2 to 2.7; P = .006). Conclusion: Children with ALL have a high incidence of vertebral fractures after 12 months of chemotherapy, and the presence of vertebral fractures and reductions in spine BMD Z-scores at baseline are highly associated clinical features. © 2012 by American Society of Clinical Oncology

    Dietary Glycemic Index, Glycemic Load, and Digestible Carbohydrate Intake Are Not Associated with Risk of Type 2 Diabetes in Eight European Countries

    No full text
    The association of glycemic index (GI) and glycemic load (GL) with the risk of type 2 diabetes remains unclear. We investigated associations of dietary GI, GL, and digestible carbohydrate with incident type 2 diabetes. We performed a case-cohort study nested within the European Prospective Investigation into Cancer and Nutrition Study, including a random subcohort (n = 16,835) and incident type 2 diabetes cases (n = 12,403). The median follow-up time was 12 y. Baseline dietary intakes were assessed using country-specific dietary questionnaires. Country-specific HR were calculated and pooled using random effects meta-analysis. Dietary GI, GL, and digestible carbohydrate in the subcohort were (mean +/- SD) 56 +/- 4, 127 +/- 23, and 226 +/- 36 g/d, respectively. After adjustment for confounders, GI and GL were not associated with incident diabetes [HR highest vs. lowest quartile (HRQ4) for GI: 1.05 (95% CI = 0.96, 1.16); HRQ4 for GL: 1.07 (95% CI = 0.95, 1.20)]. Digestible carbohydrate intake was not associated with incident diabetes [HRQ4: 0.98(95% CI = 0.86, 1.10)]. In additional analyses, we found that discrepancies in the GI value assignment to foods possibly explain differences in GI associations with diabetes within the same study population. In conclusion, an expansion of the GI tables and systematic GI value assignment to foods may be needed to improve the validity of GI values derived in such studies, after which GI associations may need reevaluation. Our study shows that digestible carbohydrate intake is not associated with diabetes risk and suggests that diabetes risk with high-GI and -GL diets may be more modest than initial studies suggested. J. Nutr. 143: 93-99, 2013
    corecore