709 research outputs found

    Brittle fracture down to femto-Joules - and below

    Full text link
    We analyze large sets of energy-release data created by stress-induced brittle fracture in a pure sapphire crystal at close to zero temperature where stochastic fluctuations are minimal. The waiting-time distribution follows that observed for fracture in rock and for earthquakes. Despite strong time correlations of the events and the presence of large-event precursors, simple prediction algorithms only succeed in a very weak probabilistic sense. We also discuss prospects for further cryogenic experiments reaching close to single-bond sensitivity and able to investigate the existence of a transition-stress regime.Comment: REVTeX, new figure added, minor modifications to tex

    Developing LCA-based benchmarks for sustainable consumption - for and with users

    Get PDF
    This article presents the development process of a consumer-oriented, illustrative benchmarking tool enabling consumers to use the results of environmental life cycle assessment (LCA) to make informed decisions. Active and environmentally conscious consumers and environmental communicators were identified as key target groups for this type of information. A brochure presenting the benchmarking tool was developed as an participatory, iterative process involving consumer focus groups, stakeholder workshops and questionnaire-based feedback. In addition to learning what works and what does not, detailed suggestions on improved wording and figures were obtained, as well as a wealth of ideas for future applications

    3-(3-Bromophenyl)-7-acetoxycoumarin

    Get PDF
    In natural product synthesis, the procurement of easily accessible starting materials is crucial. Chromenones and their subclass, coumarins, are a wide family of small, oxygen-containing aromatic heterocycles. Phenylcoumarins offer a particularly excellent starting point for a diverse chemical space of natural products, and thus are excellent staring materials for more complex natural products. Herein, we report an efficient synthesis of an easily accessible 3-phenylcoumarin bearing two orthogonally substitutable groups, bromine, and an acetyl-protected phenylic hydroxyl group

    Elasticity of Poissonian fiber networks

    Get PDF
    An effective-medium model is introduced for the elasticity of two-dimensional random fiber networks. These networks are commonly used as basic models of heterogeneous fibrous structures such as paper. Using the exact Poissonian statistics to describe the microscopic geometry of the network, the tensile modulus can be expressed by a single-parameter function. This parameter depends on the network density and fiber dimensions, which relate the macroscopic modulus to the relative importance of axial and bending deformations of the fibers. The model agrees well with simulation results and experimental findings. We also discuss the possible generalizations of the model.Peer reviewe

    Effect of Methyl Group Substitution on the Kinetics of Vinyl Radical + O-2 Reaction

    Get PDF
    The kinetics of (CH3)(2)CCH + O-2 (1) and (CH3)(2)CCCH3 + O-2 (2) reactions have been measured as a function of temperature (223-600 K) at low pressures (0.4-2 Torr) using a tubular laminar flow reactor coupled to a photoionization mass spectrometer (PIMS). These reactions are important for accurate modeling of unsaturated hydrocarbon combustion. Photolysis of a brominated precursor by a pulsed excimer laser radiation at 248 nm wavelength along the flow reactor axis was used for the production of radicals. The measured bimolecular rate coefficient of reaction 1 shows a negative temperature dependence over the temperature range 223-384 K and becomes temperature independent at higher temperatures. The bimolecular rate coefficient of reaction 2 exhibits a negative temperature dependence throughout the experimental temperature range. The bimolecular rate coefficients of reactions 1 and 2 are expected to be at the high-pressure limit under the current experimental conditions, and the following values are obtained at 298 K: k(1)(298 K) = (4.5 +/- 0.5) x 10(-12) cm(3) s(-1) and k(2)(298 = (8.9 +/- 1.0) x 10(-12) cm(3) s(-1). The observed products for reactions 1 and 2 were CH3COCH3 and CH3 + CH3COCH3, respectively. Substituting both beta-hydrogens in the vinyl radical (CH2CH) with methyl groups decreases the rate coefficient of the CH2CH + O-2 reaction by about 50%. However, the rate coefficient of the triply substituted (CH3)(2)CCCH3 radical reaction with O-2 is almost identical to the CH2CH + O-2 rate coefficient under the covered temperature range.Peer reviewe

    An experimental and master-equation modeling study of the kinetics of the reaction between resonance-stabilized (CH3)(2)CCHCH2 radical and molecular oxygen

    Get PDF
    The kinetics of the reaction between resonance-stabilized (CH3)(2)CCHCH2 radical (R) and O-2 has been investigated using photoionization mass spectrometry, and master equation (ME) simulations were performed to support the experimental results. The kinetic measurements of the (CH3)(2)CCHCH2 + O-2 reaction (1) were carried out at low helium bath-gas pressures (0.2-5.7 Torr) and over a wide temperature range (238-660 K). Under low temperature (238-298 K) conditions, the pressure-dependent bimolecular association reaction R + O-2 -> ROO determines kinetics, until at an intermediate temperature range (325-373 K) the ROO adduct becomes thermally unstable and increasingly dissociates back to the reactants with increasing temperature. The initial association of O-2 with (CH3)(2)CCHCH2 radical occurs on two distinct sites: terminal 1(t) and non-terminal 1(nt) sites on R, leading to the barrierless formation of ROO(t) and ROO(nt) adducts, respectively. Important for autoignition modelling of olefinic compounds, bimolecular reaction channels appear to open for the R + O-2 reaction at high temperatures (T > 500 K) and pressure-independent bimolecular rate coefficients of reaction (1) with a weak positive temperature dependence, (2.8-4.6) x 10(-15) cm(3) molecule(-1) s(-1), were measured in the temperature range of 500-660 K. At a temperature of 501 K, a product signal of reaction (1) was observed at m/z = 68, probably originating from isoprene. To explore the reaction mechanism of reaction (1), quantum chemical calculations and ME simulations were performed. According to the ME simulations, without any adjustment to energies, the most important and second most important product channels at the high temperatures are isoprene + HO2 (yield > 91%) and (2R/S)-3-methyl-1,2-epoxybut-3-ene + OH (yield isoprene + HO2 (similar to 2.2 kcal mol(-1)), the ME model was able to reproduce the experimental findings. Modified Arrhenius expressions for the kinetically important reaction channels are enclosed to facilitate the use of current results in combustion models.Peer reviewe

    Kinetics and thermochemistry of the reaction of 3-methylpropargyl radical with molecular oxygen

    Get PDF
    We have measured the kinetics and thermochemistry of the reaction of 3-methylpropargyl radical (but-2-yn-1-yl) with molecular oxygen over temperature (223-681 K) and bath gas density (1.2 - 15.0 x 10(16)cm(-3)) ranges employing photoionization mass-spectrometry. At low temperatures (223-304 K), the reaction proceeds overwhelmingly by a simple addition reaction to the -CH2 end of the radical, and the measured CH3CCCH2 center dot+O-2 reaction rate coefficient shows negative temperature dependence and depends on bath gas density. At intermediate temperatures (340-395 K), the addition reaction equilibrates and the equilibrium constant was determined at different temperatures. At high temperatures (465-681 K), the kinetics is governed by O-2 addition to the third carbon atom of the radical, and rate coefficient measurements were again possible. The high temperature CH3CCCH2 center dot +O(2 )rate coefficient is much smaller than at low T, shows positive temperature dependence, and is independent of bath gas density. In the intermediate and high temperature ranges, we observe a formation signal for ketene (ethenone). The reaction was further investigated by combining the experimental results with quantum chemical calculations and master equation modeling. By making small adjustments (2 - 3 kJ mol(-1)) to the energies of two key transition states, the model reproduces the experimental results within uncertainties. The experimentally constrained master equation model was used to simulate the CH3CCCH2 center dot+ O-2 reaction system at temperatures and pressures relevant to combustion. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.Peer reviewe
    • …
    corecore