97 research outputs found

    Classification of Intersystem Accidents in Infrastructure-Complex Territories

    Get PDF
    Urbanisation led to the establishment of infrastructure-complex territories (ICTs). The growing interaction between critical infrastructures in such territories, combined with an increase in the frequency and scale of natural disasters, caused a surge in intersystem accidents (ISA). ISAs are characterised by cascading processes and catastrophic consequences for regional socio-economic development, since they affect both the critical infrastructure and environment. The paper aims to classify intersystem accidents in infrastructure-complex territories, as well as to assess the adaptive resilience of these areas to external influences. An examination of available statistics on domestic and foreign intersystem accidents demonstrated the importance of the issue and allowed us to identify common features of ISAs. The research analysed various approaches to the classification of territories and their adaptive resilience to external influences, showing that the existing classifications mostly do not consider infrastructure-complex territories and the possibility of intersystem accidents. Based on the analysis of statistical data and simulation of cascade failures and emergencies, the article proposes a new approach to the classification of intersystem accidents in infrastructure-complex territories. The scale of economic and social consequences, location of the accident, structure of the development of emergency processes, and other classification features were used. The proposed classification will help simulate emergencies, develop methods for assessing the consequences and resistance of infrastructure-complex territories to external influences, and, subsequently, increase adaptive resilience and economic efficiency of regional development. Further research will be aimed at predicting the development of ISAs and assessing the resulting damage in accordance with the proposed classification

    Classification of Intersystem Accidents in Infrastructure-Complex Territories

    Get PDF
    Urbanisation led to the establishment of infrastructure-complex territories (ICTs). The growing interaction between critical infrastructures in such territories, combined with an increase in the frequency and scale of natural disasters, caused a surge in intersystem accidents (ISA). ISAs are characterised by cascading processes and catastrophic consequences for regional socio-economic development, since they affect both the critical infrastructure and environment. The paper aims to classify intersystem accidents in infrastructure-complex territories, as well as to assess the adaptive resilience of these areas to external influences. An examination of available statistics on domestic and foreign intersystem accidents demonstrated the importance of the issue and allowed us to identify common features of ISAs. The research analysed various approaches to the classification of territories and their adaptive resilience to external influences, showing that the existing classifications mostly do not consider infrastructure-complex territories and the possibility of intersystem accidents. Based on the analysis of statistical data and simulation of cascade failures and emergencies, the article proposes a new approach to the classification of intersystem accidents in infrastructure-complex territories. The scale of economic and social consequences, location of the accident, structure of the development of emergency processes, and other classification features were used. The proposed classification will help simulate emergencies, develop methods for assessing the consequences and resistance of infrastructure-complex territories to external influences, and, subsequently, increase adaptive resilience and economic efficiency of regional development. Further research will be aimed at predicting the development of ISAs and assessing the resulting damage in accordance with the proposed classification

    Mutations in the genome of avian influenza viruses of the H1 and H5 subtypes responsible for adaptation to mammals

    Get PDF
    Avian influenza viruses of the H1 and H5 subtypes were involved in the formation of highly pathogenic viruses that caused pandemics and panzootics in the 20th–21st centuries. In order to assess the zoonotic potential of viruses of these subtypes, two viruses of the H1N1 and H5N3 subtypes have been isolated from wild ducks in Moscow and adapted for growth in mouse lungs. Their phenotypic properties were studied, and the genetic changes that occurred during adaptation were identified. The original A/duck/Moscow/4970/2013 (H1N1) and A/duck/Moscow/4182-C/2010 (H5N3) viruses were apathogenic for mice but became pathogenic after 7–10 passages in mouse lungs. Complete genome sequencing revealed 2 amino acid substitutions in the proteins of the H1N1 mouse-adapted variant (Glu627Lys in PB2 and Asp35Asn in hemagglutinin (HA) – numbering according to H3) and 6 mutations in the proteins of H5N3 virus (Glu627lys in PB2, Val113Ala in PB1, Ser82Pro in PB1-F2, Lys52Arg in HA2, Arg65Lys in NP, and Ser-59Ile in NA). The increase in virulence is most likely due to a Glu627Lys substitution in the protein PB2 found in both viruses. The replacement Asp35Asn in HA of the mouse-adapted H1N1 virus is associated with an increase in the pH value of the HA transition to 5.5 versus 5.0 for that of the wild virus. The mutations found in the HA, NA, and PB1-F2 proteins of the adapted H5N3 variant are unique. The mutations Glu627Lys in PB2, Arg65Lys in NP, and Val113Ala in PB1 are most likely host adaptive

    Chargeâ Transport Properties of F6TNAPâ Based Chargeâ Transfer Cocrystals

    Full text link
    The crystal structures of the chargeâ transfer (CT) cocrystals formed by the Ï â electron acceptor 1,3,4,5,7,8â hexafluoroâ 11,11,12,12â tetracyanonaphthoâ 2,6â quinodimethane (F6TNAP) with the planar Ï â electronâ donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3â d]thiophene (BTBT), benzo[1,2â b:4,5â bâ ²]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using singleâ crystal Xâ ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixedâ stacking motifs. Cocrystals based on BTBT and CBZ Ï â electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringboneâ type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of groundâ state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TPâ , BDTâ , and PYâ based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Chargeâ carrier mobility values are obtained from spaceâ charge limited current (SCLC) measurements and fieldâ effect transistor measurements, with values exceeding 1 cm2 Vâ 1 s1 being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.Structural, electronic band structure, and electrical properties of a series of chargeâ transfer cocrystals based on F6TNAP and six planar donors are presented. Density functional theory calculations afford large conduction bandwidths and low effective masses for all six cocrystals. A few cocrystals exhibit chargeâ carrier mobilities in excess of 1 cm2 Vâ 1 sâ 1, as estimated from spaceâ charge limited current measurements.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/1/adfm201904858-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/2/adfm201904858.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/3/adfm201904858_am.pd

    Determination of cold-adapted influenza virus (Orthomyxoviridae: <i>Alphainfluenzavirus</i>) polymerase activity by the minigenome method with a fluorescent protein

    Get PDF
    Introduction. Polymerase proteins PB1 and PB2 determine the cold-adapted phenotype of the influenza virus A/Krasnodar/101/35/59 (H2N2), as was shown earlier. Objective. The development of the reporter construct to determine the activity of viral polymerase at 33 and 37 °C using the minigenome method. Materials and methods. Co-transfection of Cos-1 cells with pHW2000 plasmids expressing viral polymerase proteins PB1, PB2, PA, NP (minigenome) and reporter construct. Results. Based on segment 8, two reporter constructs were created that contain a direct or inverted NS1-GFP-NS2 sequence for the expression of NS2 and NS1 proteins translationally fused with green fluorescent protein (GFP), which allowed the evaluation the transcriptional and/or replicative activity of viral polymerase. Conclusion. Polymerase of virus A/Krasnodar/101/35/59 (H2N2) has higher replicative and transcriptional activity at 33 °C than at 37 °C. Its transcriptional activity is more temperature-dependent than its replicative activity. The replicative and transcriptional activity of polymerase A/Puerto Rico/8/34 virus (H1N1, Mount Sinai variant) have no significant differences and do not depend on temperature

    The adaptive potential of North American subtype H7N2 avian influenza viruses to mammals

    Get PDF
    Introduction. H7 subtype avian influenza viruses causing severe epizootics among birds are phylogenetically different in the Eastern and Western hemispheres. Numerous human infections caused by these viruses in the Eastern hemisphere indicate that H7 viruses can overcome the interspecies barrier and pose a potential threat of a new pandemic.The H7N2 viruses with deletion of amino acids 221–228 (H3 numbering) in hemagglutinin (HA) had been circulating among poultry in the Western Hemisphere during 1996–2006, and had once again been detected in 2016 in an animal shelter, where they caused cat diseases. The objective of this study is to elucidate the mechanism of adaptation to mammals of North American H7N2 influenza viruses with deletion in HA. Materials and methods. The A/chicken/New Jersey/294598-12/2004 (H7N2) virus was adapted to mice by the lung passages. Complete genomes of original and mouse-adapted viruses were analyzed. The receptor specificity and thermostability of viruses, HA activation pH and virulence for mice were determined. Results. The non-pathogenic H7N2 avian influenza virus became pathogenic after 10 passages in mice. Amino acid substitutions occurred in five viral proteins: one in PB2 (E627K), NA (K127N), NEP (E14Q), four in HA and six in NS1. Mutations in HA slightly changed receptor specificity but increased the pH of HA activation by 0.4 units. The NS1 protein undergone the greatest changes in the positions (N73T, S114G, K118R, G171A, F214L and G224R), where amino acid polymorphisms were observed in the original virus, but only minor amino acid variants have been preserved in the mouse adapted variant. Conclusion. The results show that H7N2 viruses have the potential to adapt to mammals. The increase in virulence is most likely due to the adaptive E627K mutation in PB2 and possibly in HA

    Self-propagating High-temperature Synthesis of Materials Based on Tungsten Carbide for One-Pot Hydrolysis-Hydrogenolysis of Cellulose Into Ethylene Glycol and 1,2-Propylene Glycol

    Get PDF
    Методом самораспространяющегося высокотемпературного синтеза из смеси оксида вольфрама, металлического магния, технического углерода и CaCO3 с использованием механохимической обработки получены каталитические системы на основе карбида вольфрама (WnC), содержащие преимущественно W2C. Показано, что фазовый состав образующихся материалов зависит от количества CaCO3. Каталитические свойства полученных материалов исследованы в реакции гидролиза-гидрогенолиза целлюлозы до низших полиолов (этиленгликоль (ЭГ) и 1,2-пропиленгликоль (ПГ)). Установлено, что в присутствии WnC основными продуктами реакции являются ЭГ и ПГ с соотношением ПГ/ЭГ – 1,5-1,8. Нанесение наночастиц никеля на поверхность WnC материалов повышает скорость реакции и выход целевых продуктов. Максимальный суммарный выход диолов составил 47,1 мол. %Catalytic systems based on tungsten carbide (WnC) containing mainly W2C were obtained by the method of self-propagating high-temperature synthesis from a mechanochemically activated mixture of tungsten oxide, metallic magnesium, carbon black and CaCO3. The phase composition of the formed materials was shown to depend on the amount of CaCO3. The catalytic properties of the materials were tested in the hydrolysis-hydrogenation of cellulose to ethylene glycol (EG) and 1,2-propylene glycol (PG). It was established that in the presence of WnC the main products of the reaction were EG and PG with a ratio of PG/EG – 1.5-1.8. The deposition of nickel nanoparticles on the WnC surface increased the reaction rate and product yields. The maximum total yield of diols was 47.1 mol. %

    The 12p13.33/RAD52 locus and genetic susceptibility to squamous cell cancers of upper aerodigestive tract

    Get PDF
    Acknowledgments: The authors thank all of the participants who took part in this research and the funders and support and technical staff who made this study possible. We also acknowledge and thank The Cancer Genome Atlas initiative whose data contributed heavily to this study. Funding: Funding for study coordination, genotyping of replication studies and statistical analysis was provided by the US National Institutes of Health (R01 CA092039 05/05S1) and the National Institute of Dental and Craniofacial Research (1R03DE020116). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
    corecore