944 research outputs found

    Shock Deformation in Zircon, a Comparison of Results from Shock-Reverberation and Single-Shock Experiments

    Get PDF
    The utility of the mineral zircon, ZrSiO4, as a shock-metamorphic geobarometer and geochronometer, has been steadily growing within the planetary science community. Zircon is an accessory phase found in many terrestrial rock types, lunar samples, lunar meteorites, martian meteorites and various other achondrites. Because zircon is refractory and has a high closure temperature for Pb diffusion, it has been used to determine the ages of some of the oldest material on Earth and elsewhere in the Solar System. Furthermore, major (O) and trace-element (REE, Ti, Hf) abundances and isotope compositions of zircon help characterize the petrogenetic environments and sources from which they crystallized. The response of zircon to impact-induced shock deformation is predominantly crystallographic, including dislocation creep and the formation of planar and sub-planar, low-angle grain boundaries; the formation of mechanical {112} twins; transformation to the high pressure polymorph reidite; the development of polycrystalline microtextures; and dissociation to the oxide constituents SiO2 and ZrO2. Shock microstructures can also variably affect the U- Pb isotope systematics of zircon and, in some instances, be used to constrain the impact age. While numerous studies have characterized shock deformation in zircon recovered from a variety of terrestrial impact craters and ejecta deposits and Apollo samples, experimental studies of shock deformation in zircon are limited to a handful of examples in the literature. In addition, the formation conditions (e.g., P, T) of various shock microstructures, such as planar-deformation bands, twins, and reidite lamellae, remain poorly con-strained. Furthermore, previous shocked-zircon experimental charges have not been analyzed using modern analytical equipment. This study will therefore under-take an new set of zircon shock experiments, which will then be microstructurally characterized using state-of-the-art instrumentation within the Astromaterials Research and Exploration Science Division (ARES), NASA Johnson Space Center

    Dynamic Bayesian belief network to model the development of walking and cycling schemes

    Get PDF
    This paper aims to describe a model which represents the formulation of decision-making processes (over a number of years) affecting the step-changes of walking and cycling (WaC) schemes. These processes can be seen as being driven by a number of causal factors, many of which are associated with the attitudes of a variety of factors, in terms of both determining whether any scheme will be implemented and, if it is implemented, the extent to which it is used. The outputs of the model are pathways as to how the future might unfold (in terms of a number of future time steps) with respect to specific pedestrian and cyclist schemes. The transitions of the decision making processes are formulated using a qualitative simulation method, which describes the step-changes of the WaC scheme development. In this article a Bayesian belief network (BBN) theory is extended to model the influence between and within factors in the dynamic decision making process

    Genome Dynamics of Campylobacter jejuni in Response to Bacteriophage Predation

    Get PDF
    Campylobacter jejuni is a leading cause of food-borne illness. Although a natural reservoir of the pathogen is domestic poultry, the degree of genomic diversity exhibited by the species limits the application of epidemiological methods to trace specific infection sources. Bacteriophage predation is a common burden placed upon C. jejuni populations in the avian gut, and we show that amongst C. jejuni that survive bacteriophage predation in broiler chickens are bacteriophage-resistant types that display clear evidence of genomic rearrangements. These rearrangements were identified as intra-genomic inversions between Mu-like prophage DNA sequences to invert genomic segments up to 590 kb in size, the equivalent of one-third of the genome. The resulting strains exhibit three clear phenotypes: resistance to infection by virulent bacteriophage, inefficient colonisation of the broiler chicken intestine, and the production of infectious bacteriophage CampMu. These genotypes were recovered from chickens in the presence of virulent bacteriophage but not in vitro. Reintroduction of these strains into chickens in the absence of bacteriophage results in further genomic rearrangements at the same locations, leading to reversion to bacteriophage sensitivity and colonisation proficiency. These findings indicate a previously unsuspected method by which C. jejuni can generate genomic diversity associated with selective phenotypes. Genomic instability of C. jejuni in the avian gut has been adopted as a mechanism to temporarily survive bacteriophage predation and subsequent competition for resources, and would suggest that C. jejuni exists in vivo as families of related meta-genomes generated to survive local environmental pressures

    Phase Heritage: Deciphering Evidence of Pre-Existing Phases via Inherited Crystallographic Orientations

    Get PDF
    The concept of 'phase heritage' (e.g., Timms et al., 2017a) involves microstructural recognition of the former presence of a phase that has since transformed to another via evidence encoded in crystallographic orientations. Phase heritage relies on the phenomenon that newly grown (daughter) phases nucleate with particular crystallographic orientation relationships with the preceding (parent) phase. This phenomenon is common for displacive (i.e., shear or martensitic) transformations, well documented in the metals and ceramics literature, but is relatively uncommon in geosciences. This presentation outlines the concepts behind this approach, showcases results from software for automated analysis of EBSD data, and illustrates examples of polymorphic and dissociation phase transformations in the ZrSiO4-ZrO2-SiO2 system, which has particularly useful applications for 'extreme thermobarometry' in impact environments (Timms et al., 2017a)

    In Situ Coordinated Analysis of Carbonaceous Chondrite Organic Matter

    Get PDF
    Microanalytical studies of carbonaceous chondrites (CCs) have identified a vast array of isotopically, chemically and texturally distinct organic components. These components were synthesized and processed within a range of physical and chemical environments, including the interstellar medium, the solar nebula and within asteroids. The nature and abundance of these molecules can be used to unravel the geochemical and isotopic record of their origins as well as their subsequent evolutionary journey

    Real-time, model-based magnetic field correction for moving, wearable MEG

    Get PDF
    Most neuroimaging techniques require the participant to remain still for reliable recordings to be made. Optically pumped magnetometer (OPM) based magnetoencephalography (OP-MEG) however, is a neuroimaging technique which can be used to measure neural signals during large participant movement (approximately 1 m) within a magnetically shielded room (MSR) (Boto et al., 2018; Seymour et al., 2021). Nevertheless, environmental magnetic fields vary both spatially and temporally and OPMs can only operate within a limited magnetic field range, which constrains participant movement. Here we implement real-time updates to electromagnetic coils mounted on-board of the OPMs, to cancel out the changing background magnetic fields. The coil currents were chosen based on a continually updating harmonic model of the background magnetic field, effectively implementing homogeneous field correction (HFC) in real-time (Tierney et al., 2021). During a stationary, empty room recording, we show an improvement in very low frequency noise of 24 dB. In an auditory paradigm, during participant movement of up to 2 m within a magnetically shielded room, introduction of the real-time correction more than doubled the proportion of trials in which no sensor saturated recorded outside of a 50 cm radius from the optimally-shielded centre of the room. The main advantage of such model-based (rather than direct) feedback is that it could allow one to correct field components along unmeasured OPM axes, potentially mitigating sensor gain and calibration issues (Borna et al., 2022)

    Evidence for a lineage of virulent bacteriophages that target Campylobacter.

    Get PDF
    BACKGROUND: Our understanding of the dynamics of genome stability versus gene flux within bacteriophage lineages is limited. Recently, there has been a renewed interest in the use of bacteriophages as 'therapeutic' agents; a prerequisite for their use in such therapies is a thorough understanding of their genetic complement, genome stability and their ecology to avoid the dissemination or mobilisation of phage or bacterial virulence and toxin genes. Campylobacter, a food-borne pathogen, is one of the organisms for which the use of bacteriophage is being considered to reduce human exposure to this organism. RESULTS: Sequencing and genome analysis was performed for two Campylobacter bacteriophages. The genomes were extremely similar at the nucleotide level (> or = 96%) with most differences accounted for by novel insertion sequences, DNA methylases and an approximately 10 kb contiguous region of metabolic genes that were dissimilar at the sequence level but similar in gene function between the two phages. Both bacteriophages contained a large number of radical S-adenosylmethionine (SAM) genes, presumably involved in boosting host metabolism during infection, as well as evidence that many genes had been acquired from a wide range of bacterial species. Further bacteriophages, from the UK Campylobacter typing set, were screened for the presence of bacteriophage structural genes, DNA methylases, mobile genetic elements and regulatory genes identified from the genome sequences. The results indicate that many of these bacteriophages are related, with 10 out of 15 showing some relationship to the sequenced genomes. CONCLUSIONS: Two large virulent Campylobacter bacteriophages were found to show very high levels of sequence conservation despite separation in time and place of isolation. The bacteriophages show adaptations to their host and possess genes that may enhance Campylobacter metabolism, potentially advantaging both the bacteriophage and its host. Genetic conservation has been shown to extend to other Campylobacter bacteriophages, forming a highly conserved lineage of bacteriophages that predate upon campylobacters and indicating that highly adapted bacteriophage genomes can be stable over prolonged periods of time

    A Cognitive Model of an Epistemic Community: Mapping the Dynamics of Shallow Lake Ecosystems

    Full text link
    We used fuzzy cognitive mapping (FCM) to develop a generic shallow lake ecosystem model by augmenting the individual cognitive maps drawn by 8 scientists working in the area of shallow lake ecology. We calculated graph theoretical indices of the individual cognitive maps and the collective cognitive map produced by augmentation. The graph theoretical indices revealed internal cycles showing non-linear dynamics in the shallow lake ecosystem. The ecological processes were organized democratically without a top-down hierarchical structure. The steady state condition of the generic model was a characteristic turbid shallow lake ecosystem since there were no dynamic environmental changes that could cause shifts between a turbid and a clearwater state, and the generic model indicated that only a dynamic disturbance regime could maintain the clearwater state. The model developed herein captured the empirical behavior of shallow lakes, and contained the basic model of the Alternative Stable States Theory. In addition, our model expanded the basic model by quantifying the relative effects of connections and by extending it. In our expanded model we ran 4 simulations: harvesting submerged plants, nutrient reduction, fish removal without nutrient reduction, and biomanipulation. Only biomanipulation, which included fish removal and nutrient reduction, had the potential to shift the turbid state into clearwater state. The structure and relationships in the generic model as well as the outcomes of the management simulations were supported by actual field studies in shallow lake ecosystems. Thus, fuzzy cognitive mapping methodology enabled us to understand the complex structure of shallow lake ecosystems as a whole and obtain a valid generic model based on tacit knowledge of experts in the field.Comment: 24 pages, 5 Figure
    • …
    corecore