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Introduction: The utility of the mineral zircon, 

ZrSiO4, as a shock-metamorphic geobarometer and 

geochronometer, has been steadily growing within the 

planetary science community. Zircon is an accessory 

phase found in many terrestrial rock types (e.g., [1]), 

lunar samples (e.g., [2]), lunar meteorites (e.g., [3]), 

martian meteorites (e.g., [4]) and various other achon-

drites (e.g., [5]). Because zircon is refractory and has a 

high closure temperature for Pb diffusion [6], it has 

been used to determine the ages of some of the oldest 

material on Earth [7] and elsewhere in the Solar Sys-

tem [5]. Furthermore, major (O) and trace-element 

(REE, Ti, Hf) abundances and isotope compositions of 

zircon help characterize the petrogenetic environments 

and sources from which they crystallized.  

The response of zircon to impact-induced shock de-

formation is predominantly crystallographic, including 

dislocation creep and the formation of planar and sub-

planar, low-angle grain boundaries; the formation of 

mechanical {112} twins [8, 9]; transformation to the 

high pressure polymorph reidite [10, 11]; the develop-

ment of polycrystalline microtextures [12]; and disso-

ciation to the oxide constituents SiO2 and ZrO2 [13]. 

Shock microstructures can also variably affect the U- 

Pb isotope systematics of zircon [14, 15] and, in some 

instances, be used to constrain the impact age. 

While numerous studies have characterized shock 

deformation in zircon recovered from a variety of ter-

restrial impact  craters and ejecta deposits (e.g., [14, 

15, 16]) and Apollo samples [8, 17], experimental 

studies of shock deformation in zircon are limited to a 

handful of examples in the literature (e.g., [17, 18]). In 

addition, the formation conditions (e.g., P, T) of vari-

ous shock microstructures, such as planar-deformation 

bands, twins, and reidite lamellae, remain poorly con-

strained. Furthermore, previous shocked-zircon exper-

imental charges have not been analyzed using modern 

analytical equipment. This study will therefore under-

take an new set of zircon shock experiments, which 

will then be microstructurally characterized using state-

of-the-art instrumentation within the Astromaterials 

Research and Exploration Science Division (ARES), 

NASA Johnson Space Center.  

Experimental Methods: We have performed a se-

ries of shock-deformation experiments on natural zir-

con megacrysts from the Mudtank Carbonatite, North-

ern Territory, Australia [20]. Two experiments were 

performed using the flat-plate accelerator (FPA), four 

experiments were undertaken using the vertical gun 

(VG), and one experiment with a two stage light-gas 

gun (LGG), housed in the Experimental Impact Lab 

within ARES. The shock-reverberation experiments 

using the FPA were undertaken with large, oriented 

zircon crystals, cut normal to [001] and [hkl]. The 

fragments were surrounded by randomly oriented zir-

con powder within a tungsten-alloy sample container 

and shocked to pressures of 21.2 and 18.2 GPa, respec-

tively. The single-shock VG experiments included a 

single-crystal oriented normal to [001] and bimodal 

zircon powders which were fired into copper targets at 

speeds of 1.1, 1.2, 1.6 and 2.6 km/s. One-dimensional 

shock-stress calculations using the hugoniots for cop-

per and zircon yielded stresses of 19.5, 21.3, 28.4, and 

41.8 GPa, respectively. The LGG single-shock experi-

ment used a lexan slug with a zircon epoxied to the tip; 

it was launched at 4.7 km/s into a copper target, 

achieving a peak pressure 106 GPa. 

Analytical methods: Zircon fragments were ex-

tracted from the FPA sample container and from cra-

ters within the VG and LGG targets. The fragments 

were mounted in epoxy and polished for analysis with 

fine sub-50 nm colloidal silica. The shocked-zircon 

charges were then imaged using the JEOL 7600F field 

emission gun scanning electron microscope housed in 

the E-Beam suite of ARES. Deformation microstruc-

tures and high pressure polymorphs were characterized 

with electron backscatter diffraction (EBSD) maps 

collected using an Oxford Instruments Symmetry de-

tector with a 20 kV accelerating voltage, 15 nA beam 

current, 17.5 mm working distance and 500 – 100 µm 

step size. Laser Raman microscopy provided additional 

confirmation of high pressure phases and shock using a 

WITec alpha300R confocal microscope. 

Results: The 18.2 GPa FPA zircon experiment dis-

plays a cleavage of four irregularly spaced sets of 

(sub-) planar fractures in reflected light and backscat-

tered electron (BSE) images. Microstructural EBSD 

mapping reveals large (>9°) crystal-plastic strain con-

centrated in planar deformation bands that run parallel 

to the developed cleavage within the grain, consistent 

with slip in both <100>[010] and <001>[100] (Fig. 1 

A). Laser Raman mapping of the sample shows that the 

https://ntrs.nasa.gov/search.jsp?R=20200001808 2020-05-24T04:17:58+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/323104399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ν3(SiO4) stretching band at 1006 cm-1 has an average 

full width of 8-10.5 cm-1 with fractures having larger 

bandwidths. Reidite, the high pressure polymorph of 

zircon, was not detected in either the EBSD or laser 

Raman maps.  

The 21.2 GPa [001] oriented FPA experiment also 

displays a cleavage in reflected light and BSE images; 

however, the cleavage is cross-cut by distinctive sets of 

lamellae. Crystallographic EBSD maps reveal that the 

cross-cutting lamellae are composed of reidite (Fig. 1 

B & C). Internally, the reidite is twinned with systemat-

ic misorientations of 70° about <110>, which are con-

sistent with a habit plane (K1) of {112} and a shear 

direction (η1) of <111>, similar to [19]. The zircon 

crystal lattice is highly strained and displays up to 8° of 

misorientation resulting from cumulative strain and 

discrete planar deformation bands. Raman imaging 

shows 1006 cm-1 bandwidths are comparable to the 

18.2 GPa shocked sample but Raman spectra consistent 

with reidite are also observed. 

Conclusions: The shocked zircon experiments pre-

sented herein establish new  pressure constraints on the 

formation conditions of shock microstructures in zir-

con. Previous experiments by [19] produced reidite at 

40 GPa but not at 20 GPa, while our study shows that 

reidite forms at 21.2 GPa under reverberation condi-

tions.  All analyzed experiments show the development 

of a cleavage within zircon and the formation of planar 

deformation bands, while {112} mechanical twins have 

not been identified. Future work will characterize 

(EBSD and laser Raman) the single-shock charges at 

19.5, 21.3, 28.4, 41.8 and 106 GPa and compare the 

resulting microstructures with those from the shock-

reverberation experiments presented herein and by 

[19]. 
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Figure 1. Electron backscatter diffraction maps of exper-

imental shocked zircon. A. Inverse pole figure (IPF) map 

of zircon shocked to 18.2 GPa. B and C. Phase and IPF 

maps of zircon with reidite lamellae shocked to 21.2 

GPa. 


