400 research outputs found

    Regulation of Small RNA Accumulation in the Maize Shoot Apex

    Get PDF
    MicroRNAs (miRNAs) and trans-acting siRNAs (ta-siRNAs) are essential to the establishment of adaxial–abaxial (dorsoventral) leaf polarity. Tas3-derived ta-siRNAs define the adaxial side of the leaf by restricting the expression domain of miRNA miR166, which in turn demarcates the abaxial side of leaves by restricting the expression of adaxial determinants. To investigate the regulatory mechanisms that allow for the precise spatiotemporal accumulation of these polarizing small RNAs, we used laser-microdissection coupled to RT-PCR to determine the expression profiles of their precursor transcripts within the maize shoot apex. Our data reveal that the pattern of mature miR166 accumulation results, in part, from intricate transcriptional regulation of its precursor loci and that only a subset of mir166 family members contribute to the establishment of leaf polarity. We show that miR390, an upstream determinant in leaf polarity whose activity triggers tas3 ta-siRNA biogenesis, accumulates adaxially in leaves. The polar expression of miR390 is established and maintained independent of the ta-siRNA pathway. The comparison of small RNA localization data with the expression profiles of precursor transcripts suggests that miR166 and miR390 accumulation is also regulated at the level of biogenesis and/or stability. Furthermore, mir390 precursors accumulate exclusively within the epidermal layer of the incipient leaf, whereas mature miR390 accumulates in sub-epidermal layers as well. Regulation of miR390 biogenesis, stability, or even discrete trafficking of miR390 from the epidermis to underlying cell layers provide possible mechanisms that define the extent of miR390 accumulation within the incipient leaf, which patterns this small field of cells into adaxial and abaxial domains via the production of tas3-derived ta-siRNAs

    Ontogeny of the maize shoot apical meristem

    Get PDF
    The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAMontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAMinitiation and function in maize

    Intragenic Meiotic Crossovers Generate Novel Alleles with Transgressive Expression Levels

    Get PDF
    Meiotic recombination is an evolutionary force that generates new genetic diversity upon which selection can act. Whereas multiple studies have assessed genome-wide patterns of recombination and specific cases of intragenic recombination, few studies have assessed intragenic recombination genome-wide in higher eukaryotes. We identified recombination events within or near genes in a population of maize recombinant inbred lines (RILs) using RNA-sequencing data. Our results are consistent with case studies that have shown that intragenic crossovers cluster at the 5\u27 ends of some genes. Further, we identified cases of intragenic crossovers that generate transgressive transcript accumulation patterns, that is, recombinant alleles displayed higher or lower levels of expression than did nonrecombinant alleles in any of ~100 RILs, implicating intragenic recombination in the generation of new variants upon which selection can act. Thousands of apparent gene conversion events were identified, allowing us to estimate the genome-wide rate of gene conversion at SNP sites (4.9 X 10-5). The density of syntenic genes (i.e., those conserved at the same genomic locations since the divergence of maize and sorghum) exhibits a substantial correlation with crossover frequency, whereas the density of nonsyntenic genes (i.e., those which have transposed or been lost subsequent to the divergence of maize and sorghum) shows little correlation, suggesting that crossovers occur at higher rates in syntenic genes than in nonsyntenic genes. Increased rates of crossovers in syntenic genes could be either a consequence of the evolutionary conservation of synteny or a biological process that helps to maintain synteny

    Laser Microdissection of Narrow Sheath Mutant Maize Uncovers Novel Gene Expression in the Shoot Apical Meristem

    Get PDF
    Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially problematic when the gene of interest is expressed in relatively few cells. Here, we describe the use of laser microdissection microarray to perform transcriptional profiling of the maize shoot apical meristem (SAM), a ~100-μm pillar of organogenic cells that is required for leaf initiation. Microarray analyses compared differential gene expression within the SAM and incipient leaf primordium of nonmutant and narrow sheath mutant plants, which harbored mutations in the duplicate genes narrow sheath1 (ns1) and narrow sheath2 (ns2). Expressed in eight to ten cells within the SAM, ns1 and ns2 encode paralogous WUSCHEL1-like homeobox (WOX) transcription factors required for recruitment of leaf initials that give rise to a large lateral domain within maize leaves. The data illustrate the utility of laser microdissection-microarray analyses to identify a relatively small number of genes that are differentially expressed within the SAM. Moreover, these analyses reveal potentially conserved WOX gene functions and implicate specific hormonal and signaling pathways during early events in maize leaf development

    Clinical Characteristics and Outcomes of Patients With Cutibacterium acnes Endocarditis

    Get PDF
    Importance: It is suggested that patients with Cutibacterium acnes endocarditis often present without fever or abnormal inflammatory markers. However, no study has yet confirmed this statement. Objective: To assess the clinical characteristics and outcomes of patients with C acnes endocarditis. Design, Setting, and Participants: A case series of 105 patients presenting to 7 hospitals in the Netherlands and France (4 university hospitals and 3 teaching hospitals) with definite endocarditis according to the modified Duke criteria between January 1, 2010, and December 31, 2020, was performed. Clinical characteristics and outcomes were retrieved from medical records. Cases were identified by blood or valve and prosthesis cultures positive for C acnes, retrieved from the medical microbiology databases. Infected pacemaker or internal cardioverter defibrillator lead cases were excluded. Statistical analysis was performed in November 2022. Main Outcomes and Measures: Main outcomes included symptoms at presentation, presence of prosthetic valve endocarditis, laboratory test results at presentation, time to positive results of blood cultures, 30-day and 1-year mortality rates, type of treatment (conservative or surgical), and endocarditis relapse rates. Results: A total of 105 patients (mean [SD] age, 61.1 [13.9] years; 96 men [91.4%]; 93 patients [88.6%] with prosthetic valve endocarditis) were identified and included. Seventy patients (66.7%) did not experience fever prior to hospital admission, nor was it present at hospitalization. The median C-reactive protein level was 3.6 mg/dL (IQR, 1.2-7.5 mg/dL), and the median leukocyte count was 10.0 × 103/µL (IQR, 8.2-12.2 × 103/µL). The median time to positive blood culture results was 7 days (IQR, 6-9 days). Surgery or reoperation was indicated for 88 patients and performed for 80 patients. Not performing the indicated surgical procedure was associated with high mortality rates. Seventeen patients were treated conservatively, in accordance with the European Society of Cardiology guideline; these patients showed relatively high rates of endocarditis recurrence (5 of 17 [29.4%]). Conclusions and Relevance: This case series suggests that C acnes endocarditis was seen predominantly among male patients with prosthetic heart valves. Diagnosing C acnes endocarditis is difficult due to its atypical presentation, with frequent absence of fever and inflammatory markers. The prolonged time to positivity of blood culture results further delays the diagnostic process. Not performing a surgical procedure when indicated seems to be associated with higher mortality rates. For prosthetic valve endocarditis with small vegetations, there should be a low threshold for surgery because this group seems prone to endocarditis recurrence.</p

    Dense-core senile plaques in the Flemish variant of Alzheimer's disease are vasocentric

    Get PDF
    Alzheimer's disease (AD) is characterized by deposition of beta-amyloid (Abeta) in diffuse and senile plaques, and variably in vessels. Mutations in the Abeta-encoding region of the amyloid precursor protein (APP) gene are frequently associated with very severe forms of vascular Abeta deposition, sometimes also accompanied by AD pathology. We earlier described a Flemish APP (A692G) mutation causing a form of early-onset AD with a prominent cerebral amyloid angiopathy and unusually large senile plaque cores. The pathogenic basis of Flemish AD is unknown. By image and mass spectrometric Abeta analyses, we demonstrated that in contrast to other familial AD cases with predominant brain Abeta42, Flemish AD patients predominantly deposit Abeta40. On serial histological section analysis we further showed that the neuritic senile plaques in APP692 brains were centered on vessels. Of a total of 2400 senile plaque cores studied from various brain regions from three patients, 68% enclosed a vessel, whereas the remainder were associated with vascular walls. These observations were confirmed by electron

    Genome-wide discovery and characterization of maize long non-coding RNAs

    No full text
    BACKGROUND Long non-coding RNAs (lncRNAs) are transcripts that are 200 bp or longer, do not encode proteins, and potentially play important roles in eukaryotic gene regulation. However, the number, characteristics and expression inheritance pattern of lncRNAs in maize are still largely unknown. RESULTS By exploiting available public EST databases, maize whole genome sequence annotation and RNA-seq datasets from 30 different experiments, we identified 20,163 putative lncRNAs. Of these lncRNAs, more than 90% are predicted to be the precursors of small RNAs, while 1,704 are considered to be high-confidence lncRNAs. High confidence lncRNAs have an average transcript length of 463 bp and genes encoding them contain fewer exons than annotated genes. By analyzing the expression pattern of these lncRNAs in 13 distinct tissues and 105 maize recombinant inbred lines, we show that more than 50% of the high confidence lncRNAs are expressed in a tissue-specific manner, a result that is supported by epigenetic marks. Intriguingly, the inheritance of lncRNA expression patterns in 105 recombinant inbred lines reveals apparent transgressive segregation, and maize lncRNAs are less affected by cis- than by trans-genetic factors. CONCLUSIONS We integrate all available transcriptomic datasets to identify a comprehensive set of maize lncRNAs, provide a unique annotation resource of the maize genome and a genome-wide characterization of maize lncRNAs, and explore the genetic control of their expression using expression quantitative trait locus mapping

    Angiotensin receptors in GtoPdb v.2023.1

    Get PDF
    The actions of angiotensin II (Ang II) are mediated by AT1 and AT2 receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Angiotensin receptors [63, 155]), which have around 30% sequence similarity. The decapeptide angiotensin I, the octapeptide angiotensin II and the heptapeptide angiotensin III are endogenous ligands. losartan, candesartan, olmesartan, telmisartan, etc. are clinically used AT1 receptor blockers

    Angiotensin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The actions of angiotensin II (Ang II) are mediated by AT1 and AT2 receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Angiotensin receptors [61, 152]), which have around 30% sequence similarity. The decapeptide angiotensin I, the octapeptide angiotensin II and the heptapeptide angiotensin III are endogenous ligands. losartan, candesartan, telmisartan, etc. are clinically used AT1 receptor blockers
    corecore