254 research outputs found

    Cross-sections for the 27 ⁣Al(γ,x)24Na{^{27}\!\rm{Al}}(\gamma,\textit{x})^{24}\rm{Na} multiparticle reaction at EγmaxE_{\rm{\gamma max}} = 40 ÷\div 95 MeV

    Full text link
    The bremsstrahlung flux-averaged cross-sections σ(Eγmax)\langle{\sigma(E_{\rm{\gamma max}})}\rangle and the cross-sections per equivalent photon σ(Eγmax)Q\langle{\sigma(E_{\rm{\gamma max}})_{\rm{Q}}}\rangle were measured for the photonuclear multiparticle reaction 27 ⁣Al(γ,x;x=3He+pd+2pn)24Na^{27}\!\rm{Al}(\gamma,\textit{x}; \textit{x} = {^{3}\rm{He}} + pd + 2pn)^{24}\rm{Na} at bremsstrahlung end-point energies ranging from 40 MeV to 95 MeV. The experiments were performed using the beam from the NSC KIPT electron linear accelerator LUE-40 with the use of the γ\gamma-activation technique. The bremsstrahlung quantum flux was calculated with the program GEANT4 and, in addition, was monitored by means of the 100Mo(γ,n)99Mo^{100}\rm{Mo}(\gamma,n)^{99}\rm{Mo} reaction. The cross-sections σ(E)\sigma(E) were computed using the TALYS1.9 code with the default options. The measured average cross-sections σ(Eγmax)\langle{\sigma(E_{\rm{\gamma max}})}\rangle and σ(Eγmax)Q\langle{\sigma(E_{\rm{\gamma max}})_{\rm{Q}}}\rangle have appeared to be higher by factors of 2.0 to 2.4 than the theoretical results. The experimental results have been found to be in good agreement with the data of other laboratories. Consideration is given to special features of calculation of σ(Eγmax)\langle{\sigma(E_{\rm{\gamma max}})}\rangle and σ(Eγmax)Q\langle{\sigma(E_{\rm{\gamma max}})_{\rm{Q}}}\rangle for the 27 ⁣Al(γ,x)24Na^{27}\!\rm{Al}(\gamma,\textit{x})^{24}\rm{Na} reaction, with occurrence of three 27 ⁣Al^{27}\!\rm{Al} photodisintegration channels. The paper also discusses the possibility of using the 27 ⁣Al(γ,x)24Na^{27}\!\rm{Al}(\gamma,\textit{x})^{24}\rm{Na} reaction for monitoring the bremsstrahlung γ\gamma-quantum flux in the photon energy region above 30 MeV.Comment: 16 pages, 6 figures, 1 tabl

    Saturation of Coulomb sum rules in the 6^Li case

    Full text link
    The Coulomb sums S_L(q) of the 6^Li nucleus have been obtained from electron scattering measurements at 3-momentum transfers q = 1.125 - 1.625 fm^{-1}. It is found that at q > 1.35 fm^{-1} the Coulomb sum of the nucleus becomes saturated: S_L(q) = 1.Comment: 6 pages, 4 figures, 1 tabl

    Bone marrow fibrosis – the basis of mielofibrosis: pathogenesis, prognostication and antifibrogenic targeted strategies.

    Get PDF
    Bone marrow fibrosis is a key patological feature and major diagnostic criterion of mielofibrosis. Although bone marrow fibrosis is manifested in a variety of malignant  and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the mielofibrosis of hematopoietic stem/progenitor cells, contributing to an impaired microenvironment toward malignant over normal hematopoiesis. The increased expression of pro­inflammatory cytokines, transforming growth factor-β, impaired megakaryocyte function and aberrant JAK-STAT signaling are the peculiarities of pathogenesis of bone marrow fibrosis. Hematopoietic stem cell transplantation remains the only therapeutic approach that reliably results in resolution of  bone marrow fibrosis in patients with mielofibrosis. In the work we review the pathogenesis, biological consequences and prognostic results of impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting at clonal hematopoietic stem/progenitor cells, aberrant signaling pathway, fibrogenic cytokines, and tumor microenvironment

    Simulation of non-stationary processes in centrifugal cascades

    Get PDF
    The model of nonstationary hydraulic and dividing processes in rectangular symmetrical counterstream centrifugal cascades is considered. The calculation technique of centrifugal cascade parameters of transition processes has been developed. The results of numerical computation are presented

    Bence-Jones protein as the form of nano-scaled β-stacked supramolecular aggregates

    Get PDF
    Abstract. The formation in β-structured protein aggregates in tissues and fluids of the body is one of the most dangerouse complications of various diseases. The most famous of them are amyloidoses, but they such deposits are observed at other, much more widespread, diseases. The generally accepted approach to amyloids’detectionis based on  high-specific coloring by Congo Red dye. However, the Abbe's diffraction limit excludes the seeing of the objects smaller than 0.61 wavelengths (about 240 nm). Such nanoscale formations are capable to disrup the functioning of surrounding tissues, to causethe complications and recurrences of the disease, and to pass through biological barriers with the following accumulation in body’s fluids. It’s likely that these conditions are the cause of the urinary congophilia, that is associated with preeclampsia at pregnancy and chronic kidney disease. Nor the less suspicious object is the Bens-Jones protein that appears in the urine at multiple myeloma and some other diseases, which are in more or less extent,are related to the disturbance of protein metabolism. The purpose of this study was to clarify the aggregate state of the Bens-Jones protein as a possible β-structured supramolecular associate. Methods.The subject of the study was the freshly received urine from a patient with multiple myeloma. The presence of the Bens-Jones protein was checked by thermopacification of the acidified sample. For control, the urine was used by a healthy person with the addition of certain amounts of human serum albumin ("Reanal", Hungary) with a concentration of 0, 0.01, 0.1 and 1%. Result. The obtained data testify to the appropriateness of such a point of view and create preresquites for the expanding of diagnostic possibilities. Conclusions.The results obtained during the study testify to the peculiarity of the structure of the Bens-Jones protein, which is nano-sized beta-structured supramolecula

    Production of 180m{^{180\rm{m}}}Hf in photoproton reaction 181{^{181}}Ta(γ,p)(\gamma,p) at energy EγmaxE_{\rm{\gamma max}} = 35-95 MeV

    Full text link
    The production of the 180mHf^{180\rm{m}}\rm{Hf} nuclei in the photoproton reaction 181Ta(γ,p){^{181}\rm{Ta}}(\gamma,p) was studied at end-point bremsstrahlung energies EγmaxE_{\rm{\gamma max}} = 35-95 MeV. The experiment was performed at the electron linear accelerator LUE-40 NSC KIPT with the use of the γ\gamma activation and off-line γ\gamma-ray spectroscopy. The experimental values of the bremsstrahlung flux-averaged cross-sections σ(Eγmax)m\langle{\sigma(E_{\rm{\gamma max}})}\rangle_{\rm{m}} for the 181Ta(γ,p)180mHf{^{181}\rm{Ta}}(\gamma,p)^{180\rm{m}}\rm{Hf} reaction were determined, and at Eγmax>55E_{\rm{\gamma max}} > 55 MeV obtained for the first time. The measured values, also as the literature data, are significantly exceed the theoretical flux-averaged cross-sections σ(Eγmax)th\langle{\sigma(E_{\rm{\gamma max}})}\rangle_{\rm{th}}. The σ(Eγmax)th\langle{\sigma(E_{\rm{\gamma max}})}\rangle_{\rm{th}} values were calculated using the cross-section σ(E)\sigma(E) computed with the TALYS1.95 code for six different level density models. A comparative analysis of the calculated total cross-sections for the reactions 181Ta(γ,p)180Hf{^{181}\rm{Ta}}(\gamma,p)^{180}\rm{Hf} and 181Ta(γ,n)180Ta{^{181}\rm{Ta}}(\gamma,n)^{180}\rm{Ta} was performed. It was shown that the photoproton (γ,p)(\gamma,p) to photoneutron (γ,n)(\gamma,n) strength ratio is consistent with the estimates based on the isospin selection rules and the value from the (e,ep)(e,e'p) experiment.Comment: 9 pages, 4 figures, 2 table
    corecore