98 research outputs found
Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle
interactions with a detector containing a total of 10 tonnes of liquid xenon
within a double-vessel cryostat. The large mass and proximity of the cryostat
to the active detector volume demand the use of material with extremely low
intrinsic radioactivity. We report on the radioassay campaign conducted to
identify suitable metals, the determination of factors limiting radiopure
production, and the selection of titanium for construction of the LZ cryostat
and other detector components. This titanium has been measured with activities
of U~1.6~mBq/kg, U~0.09~mBq/kg,
Th~~mBq/kg, Th~~mBq/kg, K~0.54~mBq/kg, and Co~0.02~mBq/kg (68\% CL).
Such low intrinsic activities, which are some of the lowest ever reported for
titanium, enable its use for future dark matter and other rare event searches.
Monte Carlo simulations have been performed to assess the expected background
contribution from the LZ cryostat with this radioactivity. In 1,000 days of
WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute
only a mean background of (stat)(sys) counts.Comment: 13 pages, 3 figures, accepted for publication in Astroparticle
Physic
Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment
The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus
interactions from its initial science run, down to cm
for the spin-independent interaction of a 36 GeV/c WIMP at 90% confidence
level. In this paper, we present a comprehensive analysis of the backgrounds
important for this result and for other upcoming physics analyses, including
neutrinoless double-beta decay searches and effective field theory
interpretations of LUX-ZEPLIN data. We confirm that the in-situ determinations
of bulk and fixed radioactive backgrounds are consistent with expectations from
the ex-situ assays. The observed background rate after WIMP search criteria
were applied was events/keV/kg/day in the
low-energy region, approximately 60 times lower than the equivalent rate
reported by the LUX experiment.Comment: 25 pages, 15 figure
Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP.
Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2
mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020
Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils
LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a
∼
7
-tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for
p
p
-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the
<
100
 
 
keV
energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout
First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment
The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a
dual-phase xenon time projection chamber operating at the Sanford Underground
Research Facility in Lead, South Dakota, USA. This Letter reports results from
LZ's first search for Weakly Interacting Massive Particles (WIMPs) with an
exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood
ratio analysis shows the data to be consistent with a background-only
hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent
WIMP-neutron, and spin-dependent WIMP-proton cross-sections for WIMP masses
above 9 GeV/c. The most stringent limit is set at 30 GeV/c, excluding
cross sections above 5.9 cm at the 90\% confidence level.Comment: 9 pages, 6 figures. See https://tinyurl.com/LZDataReleaseRun1 for a
data release related to this pape
A search for new physics in low-energy electron recoils from the first LZ exposure
The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a
dual-phase xenon time projection chamber. We report searches for new physics
appearing through few-keV-scale electron recoils, using the experiment's first
exposure of 60 live days and a fiducial mass of 5.5t. The data are found to be
consistent with a background-only hypothesis, and limits are set on models for
new physics including solar axion electron coupling, solar neutrino magnetic
moment and millicharge, and electron couplings to galactic axion-like particles
and hidden photons. Similar limits are set on weakly interacting massive
particle (WIMP) dark matter producing signals through ionized atomic states
from the Migdal effect.Comment: 13 pages, 10 figures. See https://tinyurl.com/LZDataReleaseRun1ER for
a data release related to this pape
- …