1,688 research outputs found

    Four Generations and Higgs Physics

    Full text link
    In the light of the LHC, we revisit the implications of a fourth generation of chiral matter. We identify a specific ensemble of particle masses and mixings that are in agreement with all current experimental bounds as well as minimize the contributions to electroweak precision observables. Higgs masses between 115-315 (115-750) GeV are allowed by electroweak precision data at the 68% and 95% CL. Within this parameter space, there are dramatic effects on Higgs phenomenology: production rates are enhanced, weak-boson-fusion channels are suppressed, angular distributions are modified, and Higgs pairs can we observed. We also identify exotic signals, such as Higgs decay to same-sign dileptons. Finally, we estimate the upper bound on the cutoff scale from vacuum stability and triviality.Comment: 11 pages, 7 figures, REVTe

    Top Quark Seesaw, Vacuum Structure and Electroweak Precision Constraints

    Get PDF
    We present a complete study of the vacuum structure of Top Quark Seesaw models of the Electroweak Symmetry Breaking, including bottom quark mass generation. Such models emerge naturally from extra dimensions. We perform a systematic gap equation analysis and develop an improved broken phase formulation for including exact seesaw mixings. The composite Higgs boson spectrum is studied in the large-N_c fermion-bubble approximation and an improved renormalization group approach. The theoretically allowed parameter space is restrictive, leading to well-defined predictions. We further analyze the electroweak precision constraints. Generically, a heavy composite Higgs boson with a mass of ~1TeV is predicted, yet fully compatible with the precision data.Comment: 73 pages, 26 Figures, Latex2e (minor refinements, one Fig added

    Charge-coupled devices detectors with high quantum efficiency at UV wavelengths

    Get PDF
    We report on multilayer high efficiency antireflection coating (ARC) design and development for use at UV wavelengths on CCDs and other Si-based detectors. We have previously demonstrated a set of single-layer coatings, which achieve >50% quantum efficiency (QE) in four bands from 130 to 300 nm. We now present multilayer coating designs that significantly outperform our previous work between 195 and 215 nm. Using up to 11 layers, we present several model designs to reach QE above 80%. We also demonstrate the successful performance of 5 and 11 layer ARCs on silicon and fused silica substrates. Finally, we present a five-layer coating deposited onto a thinned, delta-doped CCD and demonstrate external QE greater than 60% between 202 and 208 nm, with a peak of 67.6% at 206 nm

    Maverick dark matter at colliders

    Full text link
    Assuming that dark matter is a weakly interacting massive particle (WIMP) species X produced in the early Universe as a cold thermal relic, we study the collider signal of pp or ppbar -> XXbar + jets and its distinguishability from standard-model background processes associated with jets and missing energy. We assume that the WIMP is the sole particle related to dark matter within reach of the LHC--a "maverick" particle--and that it couples to quarks through a higher dimensional contact interaction. We simulate the WIMP final-state signal XXbar + jet and dominant standard-model (SM) background processes and find that the dark-matter production process results in higher energies for the colored final state partons than do the standard-model background processes, resulting in more QCD radiation and a higher jet multiplicity. As a consequence, the detectable signature of maverick dark matter is an excess over standard-model expectations of events consisting of large missing transverse energy, together with large leading jet transverse momentum and scalar sum of the transverse momenta of the jets. Existing Tevatron data and forthcoming LHC data can constrain (or discover!) maverick dark matter.Comment: 11 pages, 7 figure

    Emergency and critical care services in Tanzania: a survey of ten hospitals.

    Get PDF
    While there is a need for good quality care for patients with serious reversible disease in all countries in the world, Emergency and Critical Care tends to be one of the weakest parts of health systems in low-income countries. We assessed the structure and availability of resources for Emergency and Critical Care in Tanzania in order to identify the priorities for improving care in this neglected specialty. Ten hospitals in four regions of Tanzania were assessed using a structured data collection tool. Quality was evaluated with standards developed from the literature and expert opinion. Important deficits were identified in infrastructure, routines and training. Only 30% of the hospitals had an emergency room for adult and paediatric patients. None of the seven district and regional hospitals had a triage area or intensive care unit for adults. Only 40% of the hospitals had formal systems for adult triage and in less than one third were critically ill patients seen by clinicians more than once daily. In 80% of the hospitals there were no staff trained in adult triage or critical care. In contrast, a majority of equipment and drugs necessary for emergency and critical care were available in the hospitals (median 90% and 100% respectively. The referral/private hospitals tended to have a greater overall availability of resources (median 89.7%) than district/regional hospitals (median 70.6). Many of the structures necessary for Emergency and Critical Care are lacking in hospitals in Tanzania. Particular weaknesses are infrastructure, routines and training, whereas the availability of drugs and equipment is generally good. Policies to improve hospital systems for the care of emergency and critically ill patients should be prioritised

    Simplified Models for LHC New Physics Searches

    Get PDF
    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results from "Topologies for Early LHC Searches" workshop (SLAC, September 2010). Supplementary material can be found at http://lhcnewphysics.or

    Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer - Comparison of dose, toxicity and cost-effectiveness

    Get PDF
    AbstractTo quantitatively assess the effectiveness of proton therapy for individual patients, we developed a prototype for an online platform for proton decision support (PRODECIS) comparing photon and proton treatments on dose metric, toxicity and cost-effectiveness levels. An evaluation was performed with 23 head and neck cancer datasets

    Higgs Boson Decay into Hadronic Jets

    Full text link
    The remarkable agreement of electroweak data with standard model (SM) predictions motivates the study of extensions of the SM in which the Higgs boson is light and couples in a standard way to the weak gauge bosons. Postulated new light particles should have small couplings to the gauge bosons. Within this context it is natural to assume that the branching fractions of the light SM-like Higgs boson mimic those in the standard model. This assumption may be unwarranted, however, if there are non-standard light particles coupled weakly to the gauge bosons but strongly to the Higgs field. In particular, the Higgs boson may effectively decay into hadronic jets, possibly without important bottom or charm flavor content. As an example, we present a simple extension of the SM, in which the predominant decay of the Higgs boson occurs into a pair of light bottom squarks that, in turn, manifest themselves as hadronic jets. Discovery of the Higgs boson remains possible at an electron-positron linear collider, but prospects at hadron colliders are diminished substantially.Comment: 30 pages, 7 figure

    The MicroRNA-200 Family Is Upregulated in Endometrial Carcinoma

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs, miRs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. MicroRNAs are dysregulated in cancer and may play essential roles in tumorigenesis. Additionally, miRNAs have been shown to have prognostic and diagnostic value in certain types of cancer. The objective of this study was to identify dysregulated miRNAs in endometrioid endometrial adenocarcinoma (EEC) and the precursor lesion, complex atypical hyperplasia (CAH). METHODOLOGY: We compared the expression profiles of 723 human miRNAs from 14 cases of EEC, 10 cases of CAH, and 10 normal proliferative endometria controls using Agilent Human miRNA arrays following RNA extraction from formalin-fixed paraffin-embedded (FFPE) tissues. The expression of 4 dysregulated miRNAs was validated using real time reverse transcription-PCR. RESULTS: Forty-three miRNAs were dysregulated in EEC and CAH compared to normal controls (p<0.05). The entire miR-200 family (miR-200a/b/c, miR-141, and miR-429) was up-regulated in cases of EEC. CONCLUSIONS: This information contributes to the candidate miRNA expression profile that has been generated for EEC and shows that certain miRNAs are dysregulated in the precursor lesion, CAH. These miRNAs in particular may play important roles in tumorigenesis. Examination of miRNAs that are consistently dysregulated in various studies of EEC, like the miR-200 family, will aid in the understanding of the role that miRNAs play in tumorigenesis in this tumour type
    corecore