67 research outputs found

    Foot-and-mouth disease virus leader proteinase: Structural insights into the mechanism of intermolecular cleavage

    Get PDF
    Translation of foot-and-mouth disease virus RNA initiates at one of two start codons leading to the synthesis of two forms of leader proteinase L(pr)o (Lab(pro) and Lb(pro)). These forms free themselves from the viral polyprotein by intra- and intermolecular self-processing and subsequently cleave the cellular eukaryotic initiation factor (eIF) 4G. During infection, Lb(pro) removes six residues from its own C-terminus, generating sLb(pro). We present the structure of sLb(pro) bound to the inhibitor E64-R-P-NH2, illustrating how sLb(pro) can cleave between Lys/Gly and Gly/Arg pairs. in intermolecular cleavage on polyprotein substrates, Lb(pro) was unaffected by P1 or P1' substitutions and processed a substrate containing nine eIF4GI cleavage site residues whereas sLb(pro) failed to cleave the eIF4GI containing substrate and cleaved appreciably more slowly on mutated substrates. Introduction of 70 eIF4GI residues bearing the Lb(pro) binding site restored cleavage. These data imply that Lb(pro) and sLb(pro) may have different functions in infected cells. (C) 2014 the Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).Austrian Science FoundationFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Med Univ Vienna, Max F Perutz Labs, A-1030 Vienna, AustriaUniv Vienna, Dept Struct & Computat Biol, Max F Perutz Labs, A-1030 Vienna, AustriaUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biophys, BR-0404420 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biophys, BR-0404420 São Paulo, BrazilAustrian Science Foundation: P20889Austrian Science Foundation: P24038FAPESP: 12/50191-4RCNPq: 471340/2011-1CNPq: 470388/2010-2Web of Scienc

    The origins of SARS-CoV-2: a critical review

    Get PDF
    Since the first reports of a novel severe acute respiratory syndrome (SARS)-like coronavirus in December 2019 in Wuhan, China, there has been intense interest in understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population. Recent debate has coalesced around two competing ideas: a “laboratory escape” scenario and zoonotic emergence. Here, we critically review the current scientific evidence that may help clarify the origin of SARS-CoV-2

    A structural model of picornavirus leader proteinases based on papain and bleomycin hydrolase

    Get PDF
    7 pages, 3 figures, 2 tables.-- PMID: 9472614 [PubMed].The leader (L) proteinases of aphthoviruses (foot-and-mouth disease viruses) and equine rhinovirus serotypes 1 and 2 cleave themselves from the growing polyprotein. This cleavage occurs intramolecularly between the C terminus of the L proteinases and the N terminus of the subsequent protein VP4. The foot-and-mouth disease virus enzyme has been shown, in addition, to cleave at least one cellular protein, the eukaryotic initiation factor 4G. Mechanistically, inhibitor studies and sequence analysis have been used to classify the L proteinases as papain-like cysteine proteinases. However, sequence identity within the L proteinases themselves is low (between 18% and 32%) and only 14% between the L proteinases and papain. Secondary structure predictions, sequence alignments that take into account the positions of the essential catalytic residues, and structural considerations have been used in this study to investigate more closely the relationships between the L proteinases and papain. In spite of the low sequence identities, the analyses strongly suggest that the L proteinases of foot-and-mouth disease virus and of equine rhinovirus 1 have a similar overall fold to that of papain. Regions in the L proteinases corresponding to all five alpha-helices and seven beta-sheets of papain could be identified. Further comparisons with the proteinase bleomycin hydrolase, which also displays a papain topology in spite of important differences in size and amino acid sequence, support these conclusions and suggest how a C-terminal extension, present in all three L proteinases, and predicted to be an alpha-helix, might enable C-terminal self-processing to occur.This work was supported by a grant (P-11222) from the Austrian Science Foundation (to T. S.) and by grants PB92-0707 and PB95-0218 from DGICYT (to I. F.).Peer reviewe

    Translation Directed by Hepatitis A Virus IRES in the Absence of Active eIF4F Complex and eIF2

    Get PDF
    Translation directed by several picornavirus IRES elements can usually take place after cleavage of eIF4G by picornavirus proteases 2Apro or Lpro. The hepatitis A virus (HAV) IRES is thought to be an exception to this rule because it requires intact eIF4F complex for translation. In line with previous results we report that poliovirus (PV) 2Apro strongly blocks protein synthesis directed by HAV IRES. However, in contrast to previous findings we now demonstrate that eIF4G cleavage by foot-and-mouth disease virus (FMDV) Lpro strongly stimulates HAV IRES-driven translation. Thus, this is the first observation that 2Apro and Lpro exhibit opposite effects to what was previously thought to be the case in HAV IRES. This effect has been observed both in hamster BHK and human hepatoma Huh7 cells. In addition, this stimulation of translation is also observed in cell free systems after addition of purified Lpro. Notably, in presence of this FMDV protease, translation directed by HAV IRES takes place when eIF2α has been inactivated by phosphorylation. Our present findings clearly demonstrate that protein synthesis directed by HAV IRES can occur when eIF4G has been cleaved and after inactivation of eIF2. Therefore, translation directed by HAV IRES without intact eIF4G and active eIF2 is similar to that observed with other picornavirus IRESs.Dirección General de Investigación Científica y Técnica; Fundación Ramón Areces; FWF Austrian Science FundPeer Reviewe

    Vaccinia virus immunomodulator A46: A lipid and protein-binding scaffold for sequestering host TIR-domain proteins

    No full text
    Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1-83) structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N-and C-terminal domains and SAXS analysis of full-length protein A46(1-240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.TS received Austrian Science Fund (FWF) grants P24038, W1221 and W1258. GAB is a member of Max F. Perutz Laboratories and the Vienna International PostDoctoral Program (VIPS). TKS is a holder of Wellcome Trust grant 097831. IU has Spanish Ministry of Economy and Competitiveness grant BIO2013-49604-EXP.Peer Reviewe
    corecore