184 research outputs found

    Basophil Activation to Gluten and Non-Gluten Proteins in Wheat-Dependent Exercise-Induced Anaphylaxis

    Get PDF
    Wheat-dependent exercise-induced anaphylaxis (WDEIA) is a cofactor-induced wheat allergy. Gluten proteins, especially ω5-gliadins, are known as major allergens, but partially hydrolyzed wheat proteins (HWPs) also play a role. Our study investigated the link between the molecular composition of gluten or HWP and allergenicity. Saline extracts of gluten (G), gluten with reduced content of ω5-gliadins (G-ω5), slightly treated HWPs (sHWPs), and extensively treated HWPs (eHWPs) were prepared as allergen test solutions and their allergenicity assessed using the skin prick test and basophil activation test (BAT) on twelve patients with WDEIA and ten controls. Complementary sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), high-performance liquid chromatography (HPLC), and mass spectrometry (MS) analyses revealed that non-gluten proteins, mainly α-amylase/trypsin inhibitors (ATIs), were predominant in the allergen test solutions of G, G-ω5, and sHWPs. Only eHWPs contained gliadins and glutenins as major fraction. All allergen test solutions induced significantly higher %CD63+ basophils/anti-FcεRI ratios in patients compared with controls. BAT using sHWPs yielded 100% sensitivity and 83% specificity at optimal cut-off and may be useful as another tool in WDEIA diagnosis. Our findings indicate that non-gluten proteins carrying yet unidentified allergenic epitopes appear to be relevant in WDEIA. Further research is needed to clarify the role of nutritional ATIs in WDEIA and identify specific mechanisms of immune activation

    Considering medical students’ perception, concerns and needs for e-exam during COVID-19: a promising approach to improve subject specific e-exams

    Get PDF
    The COVID-19 pandemic forced a rapid shift to digital strategies including e-exams in medical schools. However, there are significant concerns, predominately from student perspectives, and further data is required to successfully establish e-assessment in the medical curricula. The objective of the study was to examine medical students’ perceptions, concerns, and needs regarding e-assessment to establish a comprehensive e-exam based on these and previous findings and to evaluate its effectiveness in terms of examinee perceptions and further needs. During the 2021 summer term, a cross-sectional study using qualitative and quantitative methods was conducted among all 1077 students at the School of Medicine, Technical University of Munich. They were asked to provide information regarding their characteristics, preferred exam format, e-assessment perception, concerns, and needs in an online questionnaire. Based on these findings, a pilot e-exam including an e-exam preparation for the students were established and subsequently evaluated among 125 pilot e-exam examinees under study consideration via an online-questionnaire. Of the 317 pre-exam participants (73.2% female), 70.3% preferred in-person exams and showed concerns about the technological framework, privacy, and examination requirements. Qualitative analysis showed that these concerns lead to additional exam stress and fear of failure. The 34 (79.4% female) participants who participated in the evaluation survey showed a significantly more positive e-exam perception. The fairness of the platform, the independence from an internet connection, the organization including the e-exam preparation, and the consideration of participant needs were discussed as particularly positive in the open-ended comments. In both surveys, participants requested uniform platforms and processes for all subjects. This study provides evidence for a positive, complementary role of student participation in a successful e-exam implementation. Furthermore, when establishing an e-exam format in the medical curricula, e-exam training, equal accessibility, availability offline, and all-round fairness should be considered

    Mast Cells Control Neutrophil Recruitment during T Cell–Mediated Delayed-Type Hypersensitivity Reactions through Tumor Necrosis Factor and Macrophage Inflammatory Protein 2

    Get PDF
    Polymorphonuclear leukocytes (PMNs) characterize the pathology of T cell–mediated autoimmune diseases and delayed-type hypersensitivity reactions (DTHRs) in the skin, joints, and gut, but are absent in T cell–mediated autoimmune diseases of the brain or pancreas. All of these reactions are mediated by interferon γ–producing type 1 T cells and produce a similar pattern of cytokines. Thus, the cells and mediators responsible for the PMN recruitment into skin, joints, or gut during DTHRs remain unknown. Analyzing hapten-induced DTHRs of the skin, we found that mast cells determine the T cell–dependent PMN recruitment through two mediators, tumor necrosis factor (TNF) and the CXC chemokine macrophage inflammatory protein 2 (MIP-2), the functional analogue of human interleukin 8. Extractable MIP-2 protein was abundant during DTHRs in and around mast cells of wild-type (WT) mice but absent in mast cell–deficient WBB6F1-KitW/KitW-v (KitW/KitW-v) mice. T cell–dependent PMN recruitment was reduced >60% by anti–MIP-2 antibodies and >80% in mast cell–deficient KitW/KitW-v mice. Mast cells from WT mice efficiently restored DTHRs and MIP-2–dependent PMN recruitment in KitW/KitW-v mice, whereas mast cells from TNF−/− mice did not. Thus, mast cell–derived TNF and MIP-2 ultimately determine the pattern of infiltrating cells during T cell–mediated DTHRs

    Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.

    Get PDF
    C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo

    Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation

    Get PDF
    Funding: JW and NARG thank the Wellcome Trust (080088, 086827, 075470), The Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377) and the European Union ALLFUN (FP7/2007 2013, HEALTH-2010-260338) for funding. MGN was supported by a Vici grant of the Netherlands Organisation for Scientific Research. AJPB and DMM were funded by STRIFE, ERC-2009-AdG-249793 and AJPB additionally by FINSysB, PITN-GA-2008-214004 and the BBSRC [BB/F00513X/1]. MDL was supported by the MRC (MR/J008230/1). GDB and SV were funded by the Wellcome Trust (086558) and TB and MK were funded by the Deutsche Forschungsgemeinschaft (Bi 696/3-1; Bi 696/5-2; Bi 696/10-1). MS was supported by the Deutsche Forschungsgemeinschaft (Sch 897/1-3) and the National Institute of Dental and Craniofacial Research (R01 DE017514-01). TDK and RKSM were funded by the National Institute of Health (AR056296, AI101935) and the American Lebanese Syrian Associated Charities (ALSAC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Staphylococcal Peptidoglycan Co-Localizes with Nod2 and TLR2 and Activates Innate Immune Response via Both Receptors in Primary Murine Keratinocytes

    Get PDF
    In mammalian host cells staphylococcal peptidoglycan (PGN) is recognized by Nod2. Whether PGN is also recognized by TLR2 is disputed. Here we carried out PGN co-localization and stimulation studies with TLR2 and Nod2 in wild type and mutant host cells. To exclude contamination with lipoproteins, polymeric staphylococcal PGN (PGNpol) was isolated from Staphylococcus aureus Δlgt (lacking lipidated prelipoproteins). PGNpol was biotinylated (PGN-Bio) for fluorescence monitoring with specific antibodies. Keratinocytes from murine oral epithelium (MK) readily internalized PGN-Bio in an endocytosis-like process. In wt MK, PGNpol induced intracellular accumulation of Nod2 and TLR2 and co-localized with Nod2 and TLR2, but not with TLR4. In TLR2-deficient MK Nod2 and in Nod2-deficient MK TLR2 was induced, indicating that PGNpol recognition by Nod2 is independent of TLR2 and vice versa. In both mutants IL-6 and IL-1B release was decreased by approximately 50% compared to wt MK, suggesting that the immune responses induced by Nod2 and TLR2 are comparable and that the two receptors act additively in MK. In TLR2-tranfected HEK293 cells PGNpol induced NFkB-promoter fused luciferase expression. To support the data, co-localization and signaling studies were carried out with SHL-PGN, a lipase protein covalently tethered to PGN-fragments of varying sizes at its C-terminus. SHL-PGN also co-localized with Nod2 or TLR2 and induced their accumulation, while SHL without PGN did not. The results show that staphylococcal PGN not only co-localizes with Nod2 but also with TLR2. PGN is able to stimulate the immune system via both receptors

    Characterization of Distinct Chondrogenic Cell Populations of Patients Suffering from Microtia Using Single-Cell Micro-Raman Spectroscopy

    Full text link
    Microtia is a congenital condition of abnormal development of the outer ear. Tissue engineering of the ear is an alternative treatment option for microtia patients. However, for this approach, the identification of high regenerative cartilage progenitor cells is of vital importance. Raman analysis provides a novel, non-invasive, label-free diagnostic tool to detect distinctive biochemical features of single cells or tissues. Using micro-Raman spectroscopy, we were able to distinguish and characterize the particular molecular fingerprints of differentiated chondrocytes and perichondrocytes and their respective progenitors isolated from healthy individuals and microtia patients. We found that microtia chondrocytes exhibited lower lipid concentrations in comparison to healthy cells, thus indicating the importance of fat storage. Moreover, we suggest that collagen is a useful biomarker for distinguishing between populations obtained from the cartilage and perichondrium because of the higher spectral contributions of collagen in the chondrocytes compared to perichondrocytes from healthy individuals and microtia patients. Our results represent a contribution to the identification of cell markers that may allow the selection of specific cell populations for cartilage tissue engineering. Moreover, the observed differences between microtia and healthy cells are essential for gaining better knowledge of the cause of microtia. It can be useful for designing novel treatment options based on further investigations of the discovered biochemical substrate alterations

    IMPROVE 1.0: Individual Monitoring of Psoriasis Activity by Regular Online App Questionnaires and Outpatient Visits

    Get PDF
    Smartphone apps gain more and more importance in supporting management of chronic diseases. Psoriasis is a highly prevalent, lifelong chronic inflammatory skin disease with a high impact on patient's quality of life. Disease management includes regular topical and systemic treatment of skin lesions as well as co-treatment of metabolic and psychologic disorders. In this study, we investigated the potential of a new smartphone app (IMPROVE 1.0) for individual monitoring of disease activity and disease influencing factors. Twelve out of 50 psoriasis patients asked for study participation performed self-assessment of psoriasis severity, life quality, and stress scores using the app over a period of 1 year. Every 2 months, study participants were carefully examined by a dermatologist in order to control the quality of app-reported data. We found that psoriasis severity and life quality values as entered in the app closely correlate to physician's examination. Furthermore, we detected strong correlations of disease activity with life quality and psoriasis serum biomarker. Temporal relations between psoriasis aggravation and previous changes of lifestyle factors, such as increased stress levels, were observed in individual patients, indicating a high potential for preventive interventions in future psoriasis apps. The vast majority of study participants evaluated IMPROVE 1.0 app positively and wish to include the app into their daily life. Hence, we demonstrate that smartphone apps are a useful tool to raise self-awareness for the dimensions of complex diseases and fully integrate psoriasis patients into individual disease management. These data are important to develop more advanced digital tools supporting the management of chronic diseases in the future
    corecore