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Abstract

C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in
immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall,
we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We
demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role
for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of
epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type
occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings
demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity
and apoptosis induction, both of which may promote fungal pathogenesis in vivo.
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Introduction

Innate immunity plays the vital role of ‘gatekeeper’ of mucosal

epithelia and is required to maintain homeostatic function and to

coordinate immunological reactions against commensal and

pathogenic microbes [1,2]. The specialized and complex in-

teraction between microbes, epithelial cells and local immune cells

results in either a degree of mutualism (commensalism) or a breach

of the mucosal barrier and subsequent cell injury (pathogenicity).

Of particular interest are ‘opportunistic’ microbes such as Candida

albicans, the most common fungal pathogen of humans, which

normally colonizes mucosal surfaces as a harmless saprophyte but

can cause mucosal disease in a significant proportion of

immunocompromised individuals.

Contact with epithelial cells is mediated by the fungal cell

wall, which is an essential structure that provides physical

strength and protects the fungus from hostile environments

(reviewed in [3,4]). The cell wall consists of an inner layer of

chitin and b-glucan and an outer layer of densely packed

mannoproteins. Both b-glucans and mannoproteins derived

from the C. albicans cell wall are known to stimulate myeloid

cells through the activation of toll-like receptors (TLRs),

particularly TLR2 and TLR4, C-type lectin receptors such as

dectin-1, and mannose receptor (MR) (reviewed in [5]).

Cytokine secretion in myeloid cells was shown to be mediated

by three specific C. albicans cell wall components: N-linked

mannans via MR, O-linked mannans via TLR4, and b-glucans
via dectin-1/TLR2 [6]. It has been proposed that during

murine systemic infections immune activation occurs due to the

gradual exposure of the underlying b-glucan after removal of

surface mannoproteins from yeast and hyphal cells. In support

of this hypothesis, caspofungin treatment of C. albicans (an

antifungal drug that targets the cell wall), mediated unmasking

of b-glucan moieties resulting in enhanced immune reactivity

via dectin-1 stimulation [7]. This model suggests that during

systemic infections the surface mannoproteins may ‘‘shield’’ the

fungus from immune attack by preventing b-glucan recognition.

Although integrated models for how C. albicans is recognized

and targeted by myeloid cells are available [8], a great deal less

is known about how epithelial cells and mucosal tissues interact
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with the fungus. Using an in vitro model of oral candidosis

based on reconstituted human epithelium (RHE), we previously

demonstrated that infection with C. albicans induces the

expression of IL-8, GM-CSF, IL-1alpha, IL-1beta, IL-6, IFN-

gamma and TNFalpha [9]. Subsequently, in the same model,

we showed that activation of this pro-inflammatory response by

C. albicans results in recruitment of polymorphonuclear (PMN)

cells and protection against fungal invasion and infection in

a toll-like receptor (TLR)4-dependent manner [2]. Others have

also confirmed that C. albicans stimulates cytokine production in

mucosal monolayer cell lines and primary mucosal cells

[10,11,12,13,14,15,16]. However, despite recent progress, the

nature of C. albicans surface moieties responsible for epithelial

cell immune activation is undefined.

Here, we report that glycan moieties of C. albicans cell wall

proteins are critical for epithelial-fungal interactions and the

induction of innate immune responses. Furthermore, we propose

that these glycan moieties promote fungal pathogenesis by

inducing cell cycle arrest and apoptosis in mucosal epithelial

cells.

Materials and Methods

Strains, Media and Growth Conditions
C. albicans wild-type strain SC5314, mnt1D/mnt2D, pmr1D and

och1D glycosylation mutants and S. cerevisiae wild-type strain were

used (overview of strains with phenotype and references given in

Table 1) and maintained on Sabouraud’s dextrose agar (Difco).

Cell Wall Preparations
C. albicans cell walls were isolated as described elsewhere [17].

The ‘‘SDS/b-Me’’ fraction represents material that is extracted

by incubating broken cell fragments, after repeated washing

with 1 M NaCl, with SDS/b-mercaptoethanol extraction buffer

(2% SDS, 150 mM NaCl, 100 mM Na-EDTA, 100 mM b-
mercaptoethanol, and 50 mM Tris-HCl, pH 7.8) for 5 min at

100uC followed by centrifugation. After a second SDS/b-
mercaptoethanol extraction and repeated washing with milliQ

water, the SDS/b-mercaptoethanol-treated water-insoluble cell

walls were freeze-dried. For obtaining more defined cell wall

(protein) fractions (CWFs) the isolated walls were incubated with

either HF-pyridine, endo-b-1,3-glucanase and/or endo-b-1,6-
glucanase as described [17]. After each incubation the

solubilized fractions were dialyzed overnight against milliQ

water and freeze-dried. Prior to use, cell walls and CWFs were

normalized to the amount of Candida cells used for cell wall

isolation.

Protein degradation was performed by proteinase K (New

England BioLabs) digestion (cell wall/proteinase K ratio 50:1, w/

w) for 30 min at 37uC. For protein deglycosylation, cell walls were

incubated with 25 U PNGaseF (New England BioLabs) per 1 mg
cell wall for 1 h at 37uC or with 1 volume 0.1 M NaOH for 6 h at

room temperature through orbital shaking.

Ethic Statement
C57BL/6 wild-type mice were purchased from Charles River

(Sulzfield, Germany), TLR2-deficient mice were a kind gift from

C. Kirschning (Technical University Munich), TLR4-deficient

and MyD88-deficient mice were kindly provided by Dr. S.

Akira (Osaka University). TLR2/4-deficient mice were generat-

ed by mating TLR2-deficient mice with TLR4-deficient mice.

All deficient strains were in the C57BL/6 background. The

animals were bred under specific pathogen-free conditions at

the animal facility of the University of Tübingen according to

European guidelines (FELASA) and to the guidelines for the

care and use of laboratory animals of the German Animal

Protection Law. Protocols were approved by the board in-

stitution animal facility of the University of Tübingen and the

local authorities Regierungspräsidium Tübingen with the permit

numbers 14 Abs. 3 Az v. 25.04.07 and Az. v. 05.06.09

according to German Animal Protection Law.

Cell Culture and Stimulation
For infection studies and experiments with C. albicans, cell

walls and CWFs the human buccal carcinoma cell line TR146

was used [18]. Cells were cultured in D-MEM medium with

10% FCS and 0.1% gentamicin solution (50 mg/ml) at 37uC in

5% CO2. Infection studies were performed in antibiotic and

antimycotic free culture medium. For receptor inhibition human

epithelial cells (TR146) were pre-incubated with 10 mg/ml

functional-grade neutralizing anti-human TLR2 mAb TLR2.1,

anti-human TLR4 HTA125, anti-human CD206 (mannose

receptor c type 1) (AbD Serotec), IgG2a (eBiosciences) and

IgG1 isotype control (AbD Serotec), 100 mg/ml laminarin or

40 mg/ml S. c. mannan (Sigma-Aldrich) 2 h prior to stimulation

with C. albicans cell walls and for endocytosis blocking human

epithelial cells (TR146) were pre-incubated with 5 mM cytocha-

lasin D (Sigma) for 30 min. Primary cultures of murine

epithelial cells were obtained from oral mucosa. After overnight

treatment of oral biopsies upside-down in trypsin solution at

4uC, the epidermis was separated from the dermis and the

epidermal cells collected by centrifugation. Murine epithelial

cells were initially cultured in defined medium (64.5% D-MEM,

21.5% Ham’s, 10% fetal calf serum, 2% penicillin-streptomycin

(10000 U/ml, 10 mg/ml)) for 2 days at 37uC in 5% CO2,

Table 1. Fungal strains used in this study.

strain phenotype reference

C. albicans SC5314 Wild-type strain [50]

C. albicans och1D defective in N-mannosylation due to loss of Och1 (a-1,6-mannosyltransferase),
attaching first mannose residues to N-mannan structure

[25]

C. albicans mnt1D mnt2D defective in O-mannosylation due to loss of Mnt1 and Mnt2 attaching second
and third a-1,2-mannans to proteins

[27]

C. albicans pmr1D defective in N- and O-mannosylation due to loss of Pmr1, essential cofactor for
Mnt and Och1 enzymes

[26]

S. cerevisiae BY4741 Wild-type strain [51]

doi:10.1371/journal.pone.0050518.t001
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followed by culture in a second defined medium (94% MCDB,

2% fetal calf serum, 2% penicillin-streptomycin) for 3 days at

37uC in 5% CO2 prior to experimentation.

RHE Infection Model
For three-dimensional skin models, 16106 human oral epithelial

cells (TR146) were seeded on inert filter substrates (Nunc,

polycarbonate filter, 0.4 mm pore size, 0.5 cm2) in antibiotic/

antimycotic-free defined keratinocyte growth medium (KGMgold,

Lonza) for 9 days. After 5 days inert filter substrates were lifted to

the air–liquid interface and basal cells were fed through the filter

substratum. Epithelium was infected on day 9 with 26 106 C.

albicans yeasts for 4 h to 24 h.

RNA Isolation and Quantitative RT-PCR
Total RNA was extracted using the NucleoSpin RNAII kit

(Macherey-Nagel) and cDNA was synthesized using 1 mg total

RNA with SuperScript III Reverse Transcriptase (Invitrogen).

Amplification of cDNA was performed as described previously

[2]. Cytokine and TLR gene expression was normalized to the

housekeeping gene and analyzed using the comparative Ct

method (DDCt). The fold change in the target genes were

calculated using the equation 22DDCt and data is presented as

fold mRNA increase. Reactions were performed in duplicate.

Immunoblot
Epithelial cells were lysed using whole cell lysate buffer (1 mM

EDTA, 0.005% (v/v) Tween-20, 0.5% (v/v) Triton X-100,

5 mM NaF, 6M Urea) freshly supplemented with protease and

phosphatase inhibitors (25 mg/ml leupeptin and pepstatin,

100 mm PMSF, 3 mg/ml aprotinin, 2 mM sodium-ortho-vanadat),

left on ice for 30 min, and centrifuged for 5 min in a refrigerated

microfuge. Supernatants were assayed for total protein using the

RotiHQuant universal kit (Carl Roth, Karlsruhe) according to the

manufacturers’ instructions.

Protein extracts (10 mg total protein per sample) were

separated by SDS-PAGE according to the method of Laemmli

[19] on a Biorad Protean II system, before transferred to PVDF

membranes (HybondTM-P, GE Healthcare) for 60 min using

a semi-dry transfer system. After probing with primary

antibodies (anti-TLR4 (clone H-80, Santa Cruz) or anti-b-actin
(clone 13E5, Cell Signaling)) and secondary antibodies,

membranes were developed using LumiGloTM chemilumines-

cent substrate (Cell Signaling) and exposed to ECL film (GE

Healthcare).

Cytokine Analysis
Human GM-CSF, IL-6 and IL-8 and mouse MIP-2 concentra-

tions in the culture supernatants were determined using commer-

cially available ELISA Kits (DuoSet, R&D Systems).

Light Microscopy
For each oral RHE, 5 mm sections were prepared using

a Leica RM2055 microtome and silane-coated slides. After

dewaxing in xylene, endogenous peroxidise activity was blocked

using 3% (v/v) hydrogen peroxide (H2O2). Antigen retrieval was

undertaken by microwaving the sections at 960 W for 20 min in

citrate buffer (100 mmol/L, pH 6.0 NaoH). Cleaved (activated)

caspase-3 expression was determined using a rabbit polyclonal

anti-active caspase-3 antibody (R&D Systems, 1:100) and

counterstained with peroxidase conjugated goat anti-rabbit

secondary IgG antibody, followed by diaminobenzidine (DAB)

chromogen detection as per manufacturer’s protocol. To

visualize C. albicans, sections were stained using Periodic Acid

Schiff (PAS), counterstained with haematoxylin and examined

by light microscopy.

Confocal Microscopy
Cells seeded on culture slides (BD Falcon) were incubated for

24 or 48 h with C. albicans cell walls, fixed with periodate lysine

paraformaldehyde PLP and permeabilized with 0.5% Triton X-

100. Non-specific binding was blocked using 5% donkey serum.

Samples were stained using anti-p27kip1 (Santa Cruz Bio-

technology) or anti-Caspase-3 (active form, R&D Systems)

followed by detection with the fluorochrome-coupled donkey

anti-rabbit-Cy3 secondary antibody (Dianova). Nuclei were

stained with TOPRO (Invitrogen). For confocal microscopy of

oral RHE specimens, tissue was cryofixed in liquid nitrogen,

and 5-mm sections were placed on silan-coated slides. Sections

were fixed in PLP (paraformaldehyde and lysine in PBS) for

2 min, followed by incubation with PBS for 5 min, PBS/BSA

(0.1%) plus Tween 20 (0.1%) for 10 min, and PBS plus 10%

donkey serum for 30 min at room temperature. Anti- (activated)

caspase-3 polyclonal rabbit antibody (R&D Systems, 1:100) and

human anti–C. albicans serum (1:60; Virion\Serion) were added

for 60 min at room temperature. Sections were then incubated

with donkey anti-rabbit–Dy549 (1:800; Dianova) and donkey

anti-human–Cy5 (1:500; Dianova) for 60 min. All nuclei were

stained with TOPRO (Invitrogen). All washing and antibody

addition steps were performed with a combination of PBS, BSA,

and Tween. The sections were analyzed with a confocal laser

scanning microscope (Leica TCS SP; Leica Microsystems) at 6
40 magnifications. To determine the relative levels of caspase-3

protein expression, fluorescence intensity measurements were

performed on the confocal images using the Leica PowerScan

software.

Proliferation and Apoptosis Assays
Proliferation of human epithelial cells was measured using

[3H]thymidine (GE Healthscare) for DNA labeling. Cultured cells

were pre-treated 6 h with C. albicans cell walls before incubation

with [3H]thymidine (1 mCi/ml) for a further 18 h. Incorporation

was measured using a beta-counter (PerkinElmer). Proliferation of

mouse oral epithelial cells was analyzed using a colorimetric Cell

Proliferation ELISA (BrDU, Roche). For apoptosis analysis,

Annexin V-FITC Apoptosis Detection Kit (BD Pharmingen) was

used.

Endotoxin, SDS and b-mercaptoethanol Quantification
Endotoxin contamination in cell wall and CWF preparations

was analyzed using the limulus amebocyte lysate (LAL) assay

(QCL-1000; Lonza) and was less than 1 EU/ml (,100 pg/ml).

SDS contamination was analyzed as previously described [20] and

was lower than 0.001% SDS (w/v). b-mercaptoethanol was

quantified using Ellman’s Reagent [21] and could not be detected

in the cell wall and CWF preparations.

Statistics
All experiments were performed at least 3 times and revealed

comparable results. Results are presented as mean 6 SEM of

three biological replicates. Statistical significance was determined

using the 2-tailed paired Student’s t test. A P value of 0.05 or less

was considered significant.

Fungal Glycosylation Induced Epithelial Apoptosis
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Results

C. albicans Cell Walls Induce Epithelial Cytokines and
TLR4 Expression
First we generally investigated the ability of C. albicans to activate

epithelial cytokine response by stimulating TR146 oral epithelial

cells for 24 h with either viable yeast cells, able to switch from

yeast to hyphal growth, heat-treated yeast cells and hyphae as well

as UV treated yeast cells to rule out possible effects on the cell wall

by the method used for fungal killing. Increased GM-CSF

(Fig. 1A), IL-6 and IL-8 (data not shown) secretion was observed

for all tested samples and significant differences appeared between

viable and heat-treated cells, whereas no significant differences in

GM-CSF induction could be observed between viable and UV

treated cells or cells in yeast and hyphal growth form (Fig. 1A).

The observed increased cytokine induction by heat-treated cells

but not UV treated cells compared to viable cells is most likely due

to loss of membrane integrity, release of intracellular content and

changes in cell wall structure that further stimulates cytokine

induction in epithelial cells (Fig. 1A). GM-CSF induction was

dependent on the number of yeast cells used for stimulation as low

numbers of yeast cells induced a higher secretion of GM-CSF

(Fig. 1B), IL-6 and IL-8 (data not shown) as compared to samples

stimulated with higher yeast cell numbers. These findings indicate,

that the induction of cytokine secretion by C. albicans in epithelial

cells dependents on the amount of stimuli, but is independent from

the morphological change of C. albicans from yeast to hyphal

growth. As the fungal cell wall is known to possess immune

activatory components, water insoluble cell walls of C. albicans were

isolated as described in Figure 2A and used to stimulate oral

epithelial cells. Gene expression analysis of pattern recognition

receptors related to myeloid C. albicans recognition, including

TLR2, TLR4, TLR6, TLR9, Dectin-1 and mannose receptor

only showed an increased level of TLR4 mRNA (Fig. 2B and Fig.

S1) and protein (Fig. 2C), that was also observed for viable C.

albicans (Fig. 2C). Furthermore, oral epithelial cells secreted

increased amounts of GM-CSF, IL-6 and IL-8 (Fig. 2D). To

identify whether a certain class of cell wall protein was responsible

for epithelial responses, we repeated the experiments with four

additional but better-defined cell wall protein fractions (CWFs)

and with the SDS/b-mercaptoethanol extract (Figure 2A and

Table 2). However, identical results were observed with all

fractions for induced TLR4 mRNA levels (Fig. 2E), and for GM-

CSF and IL-8 secretion (Fig. 2F). Notably, mRNA levels for TLR2

were unaffected (Fig. 2E), demonstrating specificity to TLR4.

Extensive studies ruled out any contamination issues with SDS

(,0.001% (w/v)), b-ME (undetectable) or LPS (,100 pg/ml). The

data indicate that epithelial cell stimulation is due to common

components present in all CWFs. Given this, all future stimulation

experiments were performed using water insoluble (SDS/b-ME-

treated) cell walls.

Induction of Epithelial Cytokines by C. albicans Cell Walls
is Independent of TLR2, TLR4, MR or Dectin-1
Our data indicated that C. albicans CWFs mediate the

upregulation of epithelial TLR4 and cytokine production.

However, the receptors through which these innate responses

are initiated are unknown. Given that TLR4, TLR2, dectin-1 and

MR have been shown to mediate the C. albicans-induced cytokine

response in myeloid cells [6], we pre-incubated oral epithelial cells

with neutralizing TLR2, TLR4 and MR monoclonal antibodies,

or with S. cerevisiae mannan [22] or laminarin (a soluble b-1,3-
glucan from algae), prior to stimulation with water insoluble C.

albicans cell walls to block possible cell wall-receptor interactions.

Laminarin interacts with dectin-1, internalizing the receptor,

thereby inhibiting dectin-1 activation by C. albicans b-glucan in

macrophages [23]. Isotype-matched antibodies were included as

negative controls. Introduction of anti-TLR2, anti-TLR4, anti-

MR antibodies, mannan or laminarin did not alter the increased

secretion of GM-CSF (Fig. 3A), IL-6, or IL-8 (data not shown)

24 h after exposure to C. albicans walls as compared with the

isotype-matched controls. S. cerevisiae mannan and laminarin

blocking capacity as well as the functional activity of the anti-

TLR2, anti-TLR4 and anti-MR antibodies was confirmed as

previously demonstrated [24] by pre-incubating human PBMCs

with these substances followed by stimulation with heat-killed yeast

or LPS, which resulted in significant reduction of GM-CSF

cytokine secretion (Fig. S2). Results for TLR/MyD88-independent

cytokine induction in epithelial cells were confirmed by stimulating

primary buccal epithelial cells from wild type and MyD88-

deficient mice with C. albicans cell walls. Induced mMIP-2

secretion does not differ in MyD88-deficient cells compared the

amount induced in wild type cells (Fig. 3B).

As MR and Dectin-1 are classical phagocytic receptors, we

treated the epithelial cells with the endocytosis inhibitor cytocha-

lasin D prior stimulation with C. albicans cell wall, to test whether

uptake is necessary or intracellular PRRs are involved in triggering

the observed cytokine induction. Interestingly, blocking the up-

take by epithelial cells lead to an increased GM-CSF production

compared to untreated cells (Fig. 3C).

Therefore, induction of the epithelial cytokine response by the

C. albicans cell walls is independent of TLR2, TLR4, MR or

dectin-1 activation, but most likely triggered by a receptor located

on the epithelial surface.

Glycosylation of cell wall mannoproteins is critical for

inducing epithelial immune responses. Given that epithelial

responses are induced by components common to all the C. albicans

CWFs tested (Fig. 2), we hypothesized that the glycosylated regions

of the cell wall-associated mannoproteins present in all these

CWFs might be responsible for oral epithelial cell stimulation

(Table 2). To test this hypothesis, we deglycosylated the cell wall

mannoproteins by treatment with PNGaseF (removal of N-

glycosylation) and/or NaOH (removal of O- and partially N-

glycosylation) and compared the immune response with (i)

untreated cell walls and (ii) cell walls after digestion of the peptide

cores by proteinase K. Deproteinized and untreated walls both

resulted in the normal induction of GM-CSF (Fig. 3D), IL-6, IL-8

secretion (data not shown) and TLR4 mRNA expression (Fig. 3E),

while removal of N- or O-glycans from the cell wall proteins

abolished cytokine induction (Fig. 3D) and TLR4 mRNA increase

(Fig. 3E). This indicates that both the N- and O-linked mannosyl

chains contribute to immune activation of mucosal epithelial cells.

To verify these results, we isolated cell walls from three C.

albicans glycosylation mutants (och1D, mnt1/mnt2D, pmr1D) and the

non-pathogenic fungus Saccharomyces cerevisiae (overview of strains

and phenotypes given in Table 1) [6,25,26,27]. The och1D mutant

has a defect in the outer, branched N-linked glycans, the mnt1/

mnt2D mutant lacks the four terminal O-linked a1,2-mannosyl

residues on the short O-glycans, and the pmr1D mutant has defects

in both N- and O-mannosylations. Whereas the cell walls from the

mnt1/mnt2D O-mannosylation mutant induced same levels of GM-

CSF in comparison with wild-type cell walls (Fig. 3F), cell walls

from the och1D N-mannosylation mutant showed significantly

reduced GM-CSF induction. The loss of both, N- and O-mannosyl

residues, as represented in the pmr1D mutant, reduced GM-CSF

induction significantly compared to wild-type and och1D mutant

(Fig. 3F), whereas the S. cerevisiae cell wall failed to induce any

cytokine response. A similar pattern was observed for TLR4

Fungal Glycosylation Induced Epithelial Apoptosis
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mRNA induction (Fig. 3G). The data demonstrate that both N-

and O-mannosyl residues activate mucosal epithelial cell responses,

but with a predominant role for N-mannosyl residues.

Inhibition of epithelial proliferation followed by

epithelial apoptosis. In cell culture we observed that the pH

values of the media exposed to all C. albicans CWFs did not change

while untreated epithelial cells induced an acidic milieu. This

prompted us to hypothesize that the cell walls may inhibit cell

proliferation. To test this, [3H]-thymidine incorporation into

epithelial cell DNA was analyzed after exposure to isolated cell

walls. Epithelial cells that were exposed for 24 h to cell walls

showed a diminished [3H]-thymidine incorporation with up to

90% of cells being non-proliferative (Fig. 4A). Cell walls isolated

from the non-pathogenic fungi S. cerevisiae failed to inhibit

epithelial proliferation (Fig. 4A), indicating specificity to C. albicans

cell walls. Heat-killed yeast cells or hyphae do not alter epithelial

proliferation in the same concentration used for isolated cell walls,

but do significantly inhibit proliferation in higher concentrations,

but independent of the morphology (Fig. 4B).

To define the mechanism of the anti-proliferative effects

induced by exposure to C. albicans cell walls, the effect on critical

molecular events known to regulate the cell cycle and the

apoptotic machinery was assessed. Inhibition of epithelial pro-

liferation was associated with a strong accumulation of the cell

cycle inhibitor p27kip1 inside the nucleus as demonstrated by

confocal laser scanning microscopy (Fig. 4C). The cyclin-de-

pendent kinase p27kip1, whose major target is the cyclinE/CDK2

complex, governs cell cycle transition from late G1 to S phase, and

has also been implicated in the regulation of apoptosis, differen-

tiation, and in the cell response to inflammatory stimuli [28,29].

Recent reports suggest that in addition to their role in

antimicrobial defense, TLR family members are involved in

regulating cell proliferation and tissue repair [30,31]. To analyze

the role of epithelial TLR2, TLR4, dectin-1 and MR in

proliferation inhibition we pre-incubated TR146 oral epithelial

cells with neutralizing anti-TLR2, -TLR4 and -MR monoclonal

antibodies or laminarin and S. cerevisiae mannan (including isotype-

matched antibodies as negative controls). Inhibition of cell

proliferation was not influenced by any of these treatments (data

not shown). The data was confirmed with primary murine buccal

epithelial cells derived from TLR-deficient mice after stimulation

with cell walls. Proliferation rates of TLR22/2, TLR42/2, and

TLR22/2/TLR42/2 epithelial cells were similar to epithelial cells

derived from wild-type mice (Fig. 4D). However, interestingly, the

proliferation rates of MyD882/2 epithelial cells were significantly

less affected demonstrating a potential role for MyD88 and

MyD88-dependent signaling pathways in proliferation inhibition

(Fig. 4D).

Time-series analysis showed that inhibition of proliferation is

followed by an increased activation of the cysteine protease

caspase-3 (Fig. 5A), which plays a crucial role in apoptotic

pathways by cleaving a variety of key cellular proteins. Further-

more, an increase in apoptotic cells was observed by typical

morphology (Fig. 5B) and flow cytometry analysis of annexin V

expression (Fig. 5C).

Induction of epithelial apoptosis critically depends on

intact cell wall glycosylation. To investigate the role of cell

wall protein glycosylation in inducing epithelial apoptosis, isolated

cell walls from the C. albicans wild-type strain, N- and O-

glycosylation mutants and S. cerevisiae (Table 1) were used. Loss

of O-mannosyl residues (mnt1/mnt2D) marginally increased apo-

ptosis induction, while loss of N- mannosyl residues (och1D)
significantly reduced apoptosis induction (p,0.05). However, loss

of both N- and O-mannosyl residues (pmr1D) totally abolished

apoptosis induction (p,0.01) (Fig. 5D).

Furthermore, apoptosis induction was not influenced by pre-

incubation of epithelial cells with neutralizing anti-TLR2, -TLR4

and -MR monoclonal antibodies or laminarin and S. cerevisiae

mannan (data not shown). Only apoptosis in primary murine

epithelial cells from MyD88-deficient mice were significantly

reduced (Fig. 5E) compared with wild-type, TLR22/2, TLR42/2,

and TLR22/2/TLR42/2 epithelial cells. Furthermore endocyto-

Figure 1. Effector responses of human oral epithelial cells to C. albicans. C. albicans induced GM-CSF secretion is independent of
morphology, but dependent on fungal burden. (A) Human epithelial cells (16106 cells) were incubated with viable C. albicans, heat2/UV-killed
yeast and heat-killed hyphae (16106 cells) for 24 h and (B) increasing numbers of viable C. albicans (16103 to 16108 cells, MOI = 0.001 to 100) for
24 h. (A and B), n= 3 (6 SEM), * p,0.05, ** p, 0.01, 2-tailed paired Student’s t test.
doi:10.1371/journal.pone.0050518.g001
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Figure 2. Effector responses of human oral epithelial cells to C. albicans cell wall extracts. Epithelial immune response is triggered by C.
albicans cell wall structure. (A) For cell wall extracts, C. albicans yeast cells were broken with glass beads and insoluble cell walls were collected by
centrifugation. Cell wall pellets were heated in SDS/b-Me extraction buffer to remove non- covalently bound protein material (SDS/b-ME-CWF) from
the cell wall fragments. Afterwards covalently bound cell wall proteins were extracted from washed and dialyzed water insoluble SDS-treated cell
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sis blocking, does not only influence the cell wall induced cytokine

secretion (Fig. 3G), also apoptosis induction is reduced in epithelial

cells unable to take up C. albicans cell wall particles (Fig. 5F).

Our data demonstrate that glycosylation of C. albicans cell wall

proteins, particularly N-glycosylation, is critical for inducing

apoptosis in epithelial cells, partially mediated through MyD88.

Early apoptosis induction during oral Candida infection

depends on intact cell wall protein glycosylation. To

confirm our findings in context of an in vivo resembling situation,

we used an established in vitro model of oral candidosis.

Reconstituted human epithelium (RHE) was infected with C.

albicans wild-type strain or glycosylation mutants (och1D, mnt1/

mnt2D, pmr1D) for 4 h or 24 h (Fig. 6). C. albicans wild-type strain

significantly induced caspase-3 (activated form) after 4 h of

infection in the oral epithelium (Fig. 6A and B), whereas epithelial

damage analyzed by LDH release due to invading hyphae could

not be detected at this early time point. O-glycosylation (mnt1/

mnt2D) mutant induced equal amounts of activated caspase-3

compared to wild-type strain after 4 h, whereas the N-glycosyla-

tion mutant (och1D) induced significantly less caspase-3 activation

and the loss of N- and O- glycosylation (pmr1D) totally abolished

caspase-3 activation (Fig. 6A and B). After 24 h infection activated

caspase-3 expression could be observed in epithelial cells adjacent

to invading hyphae and in apoptotic bodies of wild-type infected

RHE, but not in N-glycosylation mutant (och1D) infected RHE

(Fig. 6C).

Discussion

The C. albicans cell wall is the key structure mediating host-

fungal interactions. Several studies have demonstrated the

importance of C. albicans cell wall components in activating

dendritic cells [32,33], T-cells [34,35] and macrophages [6], which

may result in protective immunity against systemic and localized

candidiasis. However, the interaction between the fungal cell wall

and epithelial cells has been largely neglected and our un-

derstanding of the effect of these interactions on epithelial biology

and immunity is elementary.

Given the importance of local immunity in controlling mucosal

Candida infections, we characterized the ability of C. albicans cell

wall components to activate innate immune responses in epithelial

cells. We demonstrate the importance of C. albicans cell wall

glycans in mediating fungal-epithelial cell interactions and present

new findings concerning the role of the outer fungal cell wall layer

of highly glycosylated mannoproteins in mediating epithelial

immune responses and in inducing apoptosis, which may in turn

promote fungal virulence.

We first examined the ability of C. albicans, the fungal cell wall

and cell wall-derived protein fractions to trigger an epithelial pro-

inflammatory cytokine (GM-CSF, IL-6, IL-8) and pattern

recognition receptor (PRR) induction, namely TLR4. Our data

indicate that the glycan moieties of cell surface mannoproteins are

the principal components inducing cytokine responses in oral

epithelial cells. This immune stimulatory activity of glycan

moieties is consistent with studies in human dendritic cells

[32,33] human mononuclear cells [6] and epithelial cells [36],

Furthermore, we demonstrate that N-mannosylation is more

critical for cytokine induction than O-mannosylation, but both

are required since only the walls isolated from the pmr1D mutant

(deficient in both N- and O-mannosylation) failed to induce any

cytokine responses. Our data are supported by a recently

published study demonstrating the contribution of N- and O-

glycosylation to epithelial activation and cytokine responses [16].

However, it is in contrast with another study that did not observe

epithelial cytokine activation with purified C. albicans N- and O-

glycans [37]. In the latter study the authors hypothesized that the

lack of cytokine response may be because the purified poly-

saccharide components may differ from their steric presentation in

the complex structure of a viable cell wall. Our data using viable

and heat-killed C. albicans yeast cells and hyphae as well as the

walls with either HF-pyridine (HF-CWF), endo-b-1,3-glucanase (b-1,3-CWF), endo-b-1,6-glucanase (b-1,6-CWF) or endo-b-1,3-glucanase and endo-b-
1,6-glucanase (b-1,3/b-1,6-CWF). Cell wall extracts isolated from 16108 Candida cells (MOI = 100) were used to stimulate human epithelial cells (16106

cells) for 24 h. (B) C. albicans walls induced TLR4 and GM-CSF mRNA up regulation in epithelial cells as determined by quantitative RT-PCR. Data are
given as relative mRNA expression compared to mRNA expression of PBS-treated control cells (control = 1.0). (C) Immunoblot of induced TLR4 protein
levels in epithelial cells after 12 h incubation with viable C. albicans (MOI = 100) and 24 h incubation with cell walls. (D) Amount of GM-CSF, IL-8 and
IL-6 in the culture supernatants of cell wall-stimulated epithelial cells and PBS-treated control cells as measured by ELISA. (E) CWF-induced TLR4
mRNA up regulation in epithelial cells as determined by quantitative RT-PCR. Data are given as relative mRNA expression compared to mRNA
expression of PBS-treated control cells (control = 1.0). (F) Amount of GM-CSF and IL-8 in the culture supernatants of CWF- stimulated epithelial cells
and PBS-treated control cells, as measured by ELISA. (B, D to F), n= 4 (6 SEM), * p,0.05, 2-tailed paired Student’s t test and (C) representative data of
three independent experiments.
doi:10.1371/journal.pone.0050518.g002

Table 2. Content of the cell wall fractions.

cell wall fraction
extraction method
(enzyme/substances) putative content

SDS/b-ME SDS/b-ME-buffer non-covalently bound proteins; membrane proteins; cytosolic proteins; PIR-
proteins; GPI-proteins

b-1,3 endo-b-1,3-glucanase GPI-proteins- b-1,6-glucan complexes; PIR-proteins; remnants of b-1,3-glucan
chains

b-1,6 endo-b-1,6-glucanase GPI-proteins

b-1,3/b-1,6 endo-b-1,3-glucanase and endo-b-1,6-glucanase PIR-proteins; GPI-proteins

HF hydrofluoric acid-pyridine GPI-proteins without phosphomannan (part of the N-glycan chains)

mannoproteins are marked in bold.
GPI: glycosylphosphatidylinnositol; PIR: protein with internal repeats;
SDS: sodiumdodecylsulfate; HF: hydrofluoric acid; b-ME: mercaptoethanol.
doi:10.1371/journal.pone.0050518.t002
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Figure 3. Epithelial cytokine induction is independent of TLR2, TLR4, dectin-1 and MR. Human epithelial cells (16106) were pre-incubated
with (A) 10 mg/ml anti-TLR2, anti-TLR4, anti-MR antibodies, laminarin (100 mg/ml) or S. cerevisiae mannan (40 mg/ml) 2 h before epithelial cells were
stimulated with C. albicans walls (16108) for 24 h. (B) Oral epithelial cells (36105) isolated from wild-type and MyD882/2 mice were incubated for
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purified cell walls from C. albicans cells support this view and

indicate the lack of induction by purified N- and O- glycans was

likely due to the loss of structural and/or constitutional properties

due to the extraction process. Moreover, this hypothesis is

supported by observations that size and solubility of the recognized

structure is important for receptor activation as demonstrated for

b-glucan/dectin-1 [38].

24 h with isolated walls (36107). (C) Human epithelial cells (16106) were incubated with 5 mM cytochalasin D for 30 min prior stimulation with C.
albicans walls (16108) for 24 h (D and E) Cell wall mannoproteins were deproteinized by incubating C. albicans walls (16108) with proteinase K or
deglycosylated by PNGaseF digestion (cleaves N-glycosylation) or NaOH treatment (alkaline b-elimination reduces O-glycosylation). Human epithelial
cells (16106) were incubated for 24 h with isolated walls (as positive control) or proteinase K-, PNGaseF- and NaOH-treated walls. (F and G) Epithelial
cells (16106) were incubated for 24 h with cell walls (16108) isolated from C. albicans wild type (SC5314), N-glycosylation (och1D), O-glycosylation
(mnt1D/mnt2D), N2/O-glycosylation (pmr1D) mutant strains or non- pathogenic S. cerevisiae. Human GM-CSF and mouse MIP-2 were quantified by
ELISA. TLR4 mRNA up regulation in epithelial cells was determined by quantitative RT-PCR. Data are given as relative mRNA expression compared to
mRNA expression of PBS-treated control cells (control = 1.0). (A–G), n= 3 (6 SEM), * p,0.05, **p,0.01, 2-tailed paired Student’s t test.
doi:10.1371/journal.pone.0050518.g003

Figure 4. C. albicans cell wall has MyD88-dependent anti-proliferative effect on mucosal epithelial cells. (A). Proliferation rates were
quantified after 24 h by [3H]-thymidine assay. [3H]-thymidine (1 mCi/ml) was added 6 h after starting the incubation of human epithelial cells (16104)
with C. albicans or S. cerevisiae walls (16106), which was continued for 18 h. (B) Proliferation rate of human epithelial cells (16104) incubated with
increasing numbers of heat-killed C. albicans yeast or hyphae (16106 and 16107, MOI = 100 to 1000). (C) Confocal laser scanning microscopy of the
cell cycle inhibitor p27kip1 was performed after 24 h and 48 h of incubated human epithelial cells (16105) with C. albicans cell walls (16107) or PBS as
control (cell nuclei = blue, p27kip1 = red). Note the increase and nuclear accumulation of the cell cycle inhibitor p27kip1 in the wall-treated cells. (D)
Oral epithelial cells (36105) isolated from wild-type, TLR22/2, TLR42/2, TLR2/42/2 and MyD882/2 mice were incubated for 24 h with isolated
walls (36107). Proliferation of murine oral epithelial cells from was measured by BrdU-ELISA. (A, B and D) n=4 (6 SEM), ** p,0.01, 2-tailed paired
Student’s t test and (C) Pictures shown are representative of three independent experiments.
doi:10.1371/journal.pone.0050518.g004
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In addition to the importance of protein glycosylation in

inducing cytokine responses, our data indicate no role for b-glucan
or chitin in mediating epithelial responses to C. albicans cell walls.

This is consistent with several recent studies observing no role for

dectin-1 in epithelial cell activation [16,37].

C. albicans recognition by myeloid cells is mediated by several

different receptors, all recognizing different molecules of the

Candida cell wall. For example, TLR4 recognizes O-linked

mannans, the macrophage mannose receptor recognizes N-linked

mannans and b-glucan is recognized by dectin-1. This recognition

is responsible for the majority of the cytokine stimulating activity of

C. albicans in myeloid cells [6]. In contrast to myeloid cells, we

report that cytokine induction in epithelial cells is independent of

TLR2, TLR4, MR or dectin-1. Our data is supported by previous

Figure 5. C. albicans cell wall glycosylation-dependent apoptosis induction in oral epithelial cells. (A and B) Confocal laser scanning
microscopy of the active caspase-3 (red) and nuclei (blue) in cell wall-stimulated human epithelial cells or PBS-treated control after 24 and 48 h of
incubation. Typical morphological apoptotic characteristics observed after 24 h stimulation with cell walls with nuclear condensation (right) and
apoptotic body formation (left) are indicated (B, white arrows). (C) Apoptosis and necrosis of epithelial cells was analyzed using Annexin-V/PI
staining. No large increase of necrotic (PI single stained) cells but a clear increase of apoptosis with ,30% apoptotic epithelial cells was observed
after 72 h of incubation with C. albicans cell walls. (D) Human epithelial cells (16106) were incubated with cell walls isolated from C. albicans wild-
type (SC5314), N-glycosylation (och1D), O-glycosylation (mnt1D/mnt2D), N2/O-glycosylation (pmr1D) mutant strains or S. cerevisiae. Walls isolated
from the N-glycosylation (och1D) induced significantly less apoptosis compared to wild-type walls, whereas walls from the N2/O-glycosylation
mutant (pmr1D) and S. cerevisiae completely failed to induce apoptosis. (E) Oral epithelial cells (16106) isolated from wild-type, TLR22/2, TLR42/2,
TLR2/42/2 and MyD882/2 mice were incubated with isolated walls from C. albicans wild-type (SC5314). Apoptosis was analyzed by flow cytometry
with Annexin/PI-staining after 72 h. Loss of MyD88-mediated signalling significantly reduced apoptosis induction. (F) Human epithelial cells (16106)
were incubated with 5 mM cytochalasin D for 30 min prior stimulation with C. albicans walls (16108) and apoptosis was analyzed by flow cytometry
with Annexin/PI-staining. Endocytosis blocking significantly reduced cell wall induced apoptosis. (A and B) Pictures shown are representative of three
independent experiments. (C to F) n=3 (6 SEM), *p,0.05, **p,0.01, 2-tailed paired Student’s t test.
doi:10.1371/journal.pone.0050518.g005
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studies demonstrating that knockdown of TLR2 and TLR4

expression with siRNA also did not influence the cytokine profile

induced by C. albicans in oral epithelial cells [37]. Nevertheless,

using cell walls from C. albicans cell wall glycosylation mutants we

demonstrate that cytokine induction in epithelial cells is triggered

by N- and O- glycans, but the epithelial receptors involved remain

unidentified.

Exposure of epithelial cells to glycosylated mannoproteins

induced cell cycle arrest and apoptosis. Induction of the anti-

proliferative and apoptotic cell machinery was also confirmed in

primary human (data not shown) and murine epithelial cells,

demonstrating universal biological relevance of the observed

mechanism. We also confirmed our data by RT-PCR studies

demonstrating an increase in Bax mRNA and decrease in Bcl-2

mRNA (data not shown). Bax is a pro-apoptotic member of the

Bcl-2 family and Bcl-2 is an anti-apoptotic member, and both are

involved in the regulation of genetically programmed cell death.

Using cell wall preparations of C. albicans N-, O- and N2/O-

glycosylation mutants and pretreated wild-type preparations we

found a more pronounced role in apoptosis induction for the N-

glycans rather than O-glycans. However, both N- and O-

glycosylation is involved in apoptosis induction since only the cell

wall of the double deficient mutant (deficient in both N- and O-

glycosylation) failed to induce apoptosis. The outermost cell wall

layer of C. albicans is densely packed with surface proteins that are

highly glycosylated. Although some studies suggest a minor role for

this mannoprotein layer in stimulating systemic immunity [7],

a number of other studies indicate a prominent role for the

mannosylation in systemic as well as local Candida infections

[6,39,40].

Our novel findings may provide insight into an important

process in C. albicans pathogenesis since cell death, particularly of

epithelial cells, might favor invasion of mucosal surfaces by the

fungus. To date, C. albicans-induced apoptosis has been described

in several human and murine cells [41,42,43,44,45,46,47]. C.

albicans-induced apoptosis of murine macrophages has also been

described [42], but was induced only by viable and not heat-killed

fungal cells, indicating that macrophage apoptosis might depend

upon a factor actively released by C. albicans. Likewise, a recent

study demonstrated that viable C. albicans cells were required to

induce early apoptosis in oral epithelial cells followed by late

necrosis [48]. The fungal agents activating these apoptotic

processes remain unclear although host cell internalization of C.

albicans may be required. Irrespective, we provide strong evidence

that cell wall glycans are the inducing agents of epithelial cell

apoptosis and proliferation arrest by viable C. albicans, with a more

profound role for N-glycans. However, as with cytokine responses,

both N- and O-glycans are required since induction of apoptosis

was only abolished when water insoluble cell wall from the pmr1D
mutant was used. Given our data and the fact that b-glucans and
chitin are effectively masked by glycosylated mannoproteins in the

outer layer of viable cell walls [23], it is plausible that cell wall

glycans might also be the inducing agents of apoptosis in

macrophages [42]. This hypothesis is supported by recent work

using murine macrophages, which demonstrated the reduced

ability of C. albicans cell wall glycosylation mutants to kill

macrophages after phagocytosis, via a process independent of

hyphae formation [39].

Activation of TLRs is known to have pro-apoptotic effects, with

the adapter protein MyD88 being critically involved in this

mechanism. MyD88 is able to interact with FADD (Fas-associated

protein with death domain) to induce caspase-8 activation and

ultimately apoptosis induction [29]. Therefore, a further novel

finding is that induction of epithelial apoptosis by C. albicans

Figure 6. Cleaved (activated) caspase-3 expression in C. albicans infected oral RHE. Oral RHE was infected with 26106 yeast cells from
either C. albicans wild-type (SC5314), N-glycosylation (och1D), O-glycosylation (mnt1D/mnt2D) or N2/O-glycosylation (pmr1D) mutant strains for 4 h
or 24 h. (A) Confocal microscopy of active caspase-3 expression (red) in RHEs after 4 h showed no caspase-3 induction in uninfected () or N2/O-
glycosylation (pmr1D) mutant infected epithelium, whereas infection with C. albicans wild-type or O-glycosylation (mnt1D/mnt2D) mutant strain
increased caspase-3 activation after 4 h of incubation. In N-glycosylation (och1D) mutant infected RHE reduced amounts of caspase-3 were observed.
(B) Significantly reduced mean fluorescence intensity was observed in O-glycosylation (mnt1D/mnt2D) and N2/O-glycosylation (pmr1D) mutant
infected RHEs compared to wild-type infected epithelium. (C) Cleaved caspase-3 expression (brown staining) is seen after 24 h in the nuclei of RHE
cells adjacent to invading fungal hyphae and in apoptotic bodies (black arrows) in SC5314 but not Doch1infected cultures. (A) Pictures shown are
representative of three independent experiments; nuclei of epithelial cells are stained in green and C. albicans in blue. (B) Mean results of 10 analysed
slides of three independent experiments, n=3 (6 SEM), *p,0.05, **p,0.01, 2-tailed paired Student’s t test.
doi:10.1371/journal.pone.0050518.g006
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appears to be independent of TLR2, TLR4 or MR. This was

demonstrated by antibody blocking studies and supported by data

using epithelial cells from TLR22/2, TLR42/2 and TLR22/

2/42/2 mice. However, inhibition of epithelial proliferation by C.

albicans, while also independent of TLR2, TLR4 or MR, was

dependent to some extent on MyD88 as oral epithelial cells from

MyD882/2 mice showed significantly higher proliferation rates in

the presence of C. albicans cell walls and less apoptosis induction.

Therefore, our data suggest that MyD88 is involved in epithelial

proliferation and apoptosis, which is likely mediated through

signaling pathway interplay rather than C. albicans cell wall

interaction with a specific pattern recognition receptor.

In intestinal mucosa, LPS-induced TLR4 activation and

enhanced NF-kB induction leads to increased apoptosis in

enterocytes of new born mice, but not adult mice. Due to different

expression levels of TLR4 in newborn and adult mice, TLR4

levels may be important for homeostatic versus pathological role

[49]. We previously showed that activation of neutrophils protects

epithelial tissues against fungal invasion via epithelial TLR4 up

regulation [24]. Although the precise role of TLR4 in mucosal

protection against fungal infection is still unclear, our data indicate

that the observed increase in TLR4 expression of oral epithelial

cells through glycosylated regions of C. albicans cell wall proteins

may be more critical in inducing subsequent protective responses

and to maintain epithelial homeostasis rather than initiating

inflammation. Further studies are clearly warranted to identify the

receptors and pathway interactions responsible for inducing C.

albicans-mediated apoptosis in epithelial cells.

In conclusion, N- and O-glycosylation of C. albicans cell wall

proteins is not only a potent stimulus of epithelial innate responses

but is also critical for the regulation of epithelial proliferation and

apoptotic mechanisms. This demonstrates the potential impor-

tance of these fungal surface moieties in epithelial-fungal

interactions and in promoting fungal pathogenesis.

Supporting Information

Figure S1 mRNA expression profile of epithelial cells
challenged with C. albicans. Cell wall isolated from 16108

Candida cells (MOI=100) were used to stimulate human epithelial

cells (16106 cells) for 24 h and induced mRNA expression was

determined by quantitative RT-PCR. Data are given as relative

mRNA expression compared to mRNA expression of PBS-treated

control cells (control = 1.0). n=4 (6 SEM), * p,0.05, 2-tailed

paired Student’s t test.

(TIF)

Figure S2 Positive blocking effect of antibodies and
carbohydrates. Human PBMCs (16106) were pre-incubated

with 10 mg/ml anti-TLR2, anti-TLR4, anti-MR antibodies,

laminarin (100 mg/ml) or S. cerevisiae mannan (40 mg/ml) 1 h

before cells were stimulated with heat-treated C. albicans (16108)

for 24 h or LPS (100 ng/ml). GM-CSF was quantified by ELISA.

n=3 (6 SEM), * p,0.05, **p,0.01, 2-tailed paired Student’s t

test.

(TIF)

Acknowledgments

We thank Birgit Fehrenbacher, Sybille Schmidt, Birgit Walker, Renate
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Deepa Nayar, King’s College London, for excellent technical assistance.

We thank Prof. Neil. A.R. Gow (University of Aberdeen) for providing the

C. albicans och1D, mnt1/mnt2D and pmr1D mutant strains.

Author Contributions

Conceived and designed the experiments: JW GW MS CB HCK.

Performed the experiments: JW SK ST DMS. Analyzed the data: JW GW

MS. Contributed reagents/materials/analysis tools: PG AB OB MW TB.

Wrote the paper: JW MS JN.

{ Deceased

References

1. Villar CC, Dongari-Bagtzoglou A (2008) Immune defence mechanisms and

immunoenhancement strategies in oropharyngeal candidiasis. Expert Rev Mol

Med 10: e29.

2. Weindl G, Wagener J, Schaller M (2010) Epithelial cells and innate antifungal

defense. J Dent Res 89: 666–675.

3. Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev

72: 495–544.

4. Nather K, Munro CA (2008) Generating cell surface diversity in Candida

albicans and other fungal pathogens. FEMS Microbiol Lett 285: 137–145.

5. Gil ML, Gozalbo D (2009) Role of Toll-like receptors in systemic Candida

albicans infections. Front Biosci 14: 570–582.

6. Netea MG, Gow NA, Munro CA, Bates S, Collins C, et al. (2006) Immune

sensing of Candida albicans requires cooperative recognition of mannans and

glucans by lectin and Toll-like receptors. J Clin Invest 116: 1642–1650.

7. Wheeler RT, Kombe D, Agarwala SD, Fink GR (2008) Dynamic, morphotype-

specific Candida albicans beta-glucan exposure during infection and drug

treatment. PLoS Pathog 4: e1000227.

8. Netea MG, Brown GD, Kullberg BJ, Gow NA (2008) An integrated model of

the recognition of Candida albicans by the innate immune system. Nat Rev

Microbiol 6: 67–78.

9. Schaller M, Mailhammer R, Grassl G, Sander CA, Hube B, et al. (2002)

Infection of human oral epithelia with Candida species induces cytokine

expression correlated to the degree of virulence. J Invest Dermatol 118: 652–

657.

10. Rouabhia M, Ross G, Page N, Chakir J (2002) Interleukin-18 and gamma

interferon production by oral epithelial cells in response to exposure to Candida

albicans or lipopolysaccharide stimulation. Infect Immun 70: 7073–7080.

11. Steele C, Fidel PL, Jr. (2002) Cytokine and chemokine production by human

oral and vaginal epithelial cells in response to Candida albicans. Infect Immun

70: 577–583.

12. Dongari-Bagtzoglou A, Kashleva H (2003) Candida albicans triggers interleukin-

8 secretion by oral epithelial cells. Microb Pathog 34: 169–177.

13. Egusa H, Nikawa H, Makihira S, Yatani H, Hamada T (2006) In vitro

mechanisms of interleukin-8-mediated responses of human gingival epithelial

cells to Candida albicans infection. Int J Med Microbiol 296: 301–311.

14. Moyes DL, Murciano C, Runglall M, Islam A, Thavaraj S, et al. (2011) Candida

albicans Yeast and Hyphae are Discriminated by MAPK Signaling in Vaginal

Epithelial Cells. PLoS One 6: e26580.

15. Moyes DL, Murciano C, Runglall M, Kohli A, Islam A, et al. (2011) Activation

of MAPK/c-Fos induced responses in oral epithelial cells is specific to Candida

albicans and Candida dubliniensis hyphae. Med Microbiol Immunol.

16. Murciano C, Moyes DL, Runglall M, Islam A, Mille C, et al. (2011) Candida

albicans Cell Wall Glycosylation May Be Indirectly Required for Activation of

Epithelial Cell Proinflammatory Responses. Infect Immun 79: 4902–4911.

17. de Groot PW, de Boer AD, Cunningham J, Dekker HL, de Jong L, et al. (2004)

Proteomic analysis of Candida albicans cell walls reveals covalently bound

carbohydrate-active enzymes and adhesins. Eukaryot Cell 3: 955–965.

18. Rupniak HT, Rowlatt C, Lane EB, Steele JG, Trejdosiewicz LK, et al. (1985)

Characteristics of four new human cell lines derived from squamous cell

carcinomas of the head and neck. J Natl Cancer Inst 75: 621–635.

19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the

head of bacteriophage T4. Nature 227: 680–685.

20. Arand M, Friedberg T, Oesch F (1992) Colorimetric quantitation of trace

amounts of sodium lauryl sulfate in the presence of nucleic acids and proteins.

Anal Biochem 207: 73–75.

21. Ellman GL (1958) A colorimetric method for determining low concentrations of

mercaptans. Arch Biochem Biophys 74: 443–450.

22. van de Veerdonk FL, Marijnissen RJ, Kullberg BJ, Koenen HJ, Cheng SC, et al.

(2009) The macrophage mannose receptor induces IL-17 in response to Candida

albicans. Cell Host Microbe 5: 329–340.

23. Gantner BN, Simmons RM, Underhill DM (2005) Dectin-1 mediates

macrophage recognition of Candida albicans yeast but not filaments. EMBO J

24: 1277–1286.

24. Weindl G, Naglik JR, Kaesler S, Biedermann T, Hube B, et al. (2007) Human

epithelial cells establish direct antifungal defense through TLR4-mediated

signaling. J Clin Invest 117: 3664–3672.

Fungal Glycosylation Induced Epithelial Apoptosis

PLOS ONE | www.plosone.org 12 November 2012 | Volume 7 | Issue 11 | e50518



25. Bates S, Hughes HB, Munro CA, Thomas WP, MacCallum DM, et al. (2006)

Outer chain N-glycans are required for cell wall integrity and virulence of
Candida albicans. J Biol Chem 281: 90–98.

26. Bates S, MacCallum DM, Bertram G, Munro CA, Hughes HB, et al. (2005)

Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is
required for glycosylation and virulence. J Biol Chem 280: 23408–23415.

27. Munro CA, Bates S, Buurman ET, Hughes HB, Maccallum DM, et al. (2005)
Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-

mannosyltransferases that participate in O-linked mannosylation and are

required for adhesion and virulence. J Biol Chem 280: 1051–1060.
28. Hasan UA, Trinchieri G, Vlach J (2005) Toll-like receptor signaling stimulates

cell cycle entry and progression in fibroblasts. J Biol Chem 280: 20620–20627.
29. Salaun B, Romero P, Lebecque S (2007) Toll-like receptors’ two-edged sword:

when immunity meets apoptosis. Eur J Immunol 37: 3311–3318.
30. Abreu MT, Fukata M, Arditi M (2005) TLR signaling in the gut in health and

disease. J Immunol 174: 4453–4460.

31. Fukata M, Michelsen KS, Eri R, Thomas LS, Hu B, et al. (2005) Toll-like
receptor-4 is required for intestinal response to epithelial injury and limiting

bacterial translocation in a murine model of acute colitis. Am J Physiol
Gastrointest Liver Physiol 288: G1055–1065.

32. Pietrella D, Bistoni G, Corbucci C, Perito S, Vecchiarelli A (2006) Candida

albicans mannoprotein influences the biological function of dendritic cells. Cell
Microbiol 8: 602–612.

33. Cambi A, Netea MG, Mora-Montes HM, Gow NA, Hato SV, et al. (2008)
Dendritic cell interaction with Candida albicans critically depends on N-linked

mannan. J Biol Chem 283: 20590–20599.
34. Nisini R, Romagnoli G, Gomez MJ, La Valle R, Torosantucci A, et al. (2001)

Antigenic properties and processing requirements of 65-kilodalton mannopro-

tein, a major antigen target of anti-Candida human T-cell response, as disclosed
by specific human T-cell clones. Infect Immun 69: 3728–3736.

35. La Sala A, Urbani F, Torosantucci A, Cassone A, Ausiello CM (1996)
Mannoproteins from Candida albicans elicit a Th-type-1 cytokine profile in

human Candida specific long-term T cell cultures. J Biol Regul Homeost Agents

10: 8–12.
36. de Boer AD, de Groot PW, Weindl G, Schaller M, Riedel D, et al. (2010) The

Candida albicans cell wall protein Rhd3/Pga29 is abundant in the yeast form
and contributes to virulence. Yeast 27: 611–624.

37. Moyes DL, Runglall M, Murciano C, Shen C, Nayar D, et al. (2010) A biphasic
innate immune MAPK response discriminates between the yeast and hyphal

forms of Candida albicans in epithelial cells. Cell Host Microbe 8: 225–235.

38. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, et al. (2011)
Activation of the innate immune receptor Dectin-1 upon formation of

a ‘phagocytic synapse’. Nature 472: 471–475.

39. McKenzie CG, Koser U, Lewis LE, Bain JM, Mora-Montes HM, et al. (2010)

Contribution of Candida albicans cell wall components to recognition by and

escape from murine macrophages. Infect Immun 78: 1650–1658.

40. Mora-Montes HM, Bates S, Netea MG, Castillo L, Brand A, et al. (2010) A

multifunctional mannosyltransferase family in Candida albicans determines cell

wall mannan structure and host-fungus interactions. J Biol Chem 285: 12087–

12095.

41. Burrello N, Salmeri M, Perdichizzi A, Bellanca S, Pettinato G, et al. (2009)

Candida albicans experimental infection: effects on human sperm motility,

mitochondrial membrane potential and apoptosis. Reprod Biomed Online 18:

496–501.

42. Gasparoto TH, Gaziri LC, Burger E, de Almeida RS, Felipe I (2004) Apoptosis

of phagocytic cells induced by Candida albicans and production of IL-10. FEMS

Immunol Med Microbiol 42: 219–224.

43. Hornbach A, Heyken A, Schild L, Hube B, Loffler J, et al. (2009) The

glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction

of Candida albicans with human neutrophils. Infect Immun 77: 5216–5224.

44. Ibata-Ombetta S, Idziorek T, Trinel PA, Poulain D, Jouault T (2003) Role of

phospholipomannan in Candida albicans escape from macrophages and

induction of cell apoptosis through regulation of bad phosphorylation.

Ann N Y Acad Sci 1010: 573–576.

45. Ibata-Ombetta S, Idziorek T, Trinel PA, Poulain D, Jouault T (2003) Candida

albicans phospholipomannan promotes survival of phagocytosed yeasts through

modulation of bad phosphorylation and macrophage apoptosis. J Biol Chem

278: 13086–13093.

46. Rotstein D, Parodo J, Taneja R, Marshall JC (2000) Phagocytosis of Candida

albicans induces apoptosis of human neutrophils. Shock 14: 278–283.

47. Scheper MA, Shirtliff ME, Meiller TF, Peters BM, Jabra-Rizk MA (2008)

Farnesol, a fungal quorum-sensing molecule triggers apoptosis in human oral

squamous carcinoma cells. Neoplasia 10: 954–963.

48. Villar CC, Zhao XR (2010) Candida albicans induces early apoptosis followed

by secondary necrosis in oral epithelial cells. Mol Oral Microbiol 25: 215–225.

49. Siggers RH, Hackam DJ (2011) The role of innate immune-stimulated epithelial

apoptosis during gastrointestinal inflammatory diseases. Cell Mol Life Sci 68:

3623–3634.

50. Gillum AM, Tsay EY, Kirsch DR (1984) Isolation of the Candida albicans gene

for orotidine-59-phosphate decarboxylase by complementation of S. cerevisiae

ura3 and E. coli pyrF mutations. Mol Gen Genet 198: 179–182.

51. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, et al. (1998) Designer

deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of

strains and plasmids for PCR-mediated gene disruption and other applications.

Yeast 14: 115–132.

Fungal Glycosylation Induced Epithelial Apoptosis

PLOS ONE | www.plosone.org 13 November 2012 | Volume 7 | Issue 11 | e50518


