511 research outputs found

    Anti-interleukin 2 receptor monoclonal antibodies spare phenotypically distinct T suppressor cells in vivo and exert synergistic biological effects.

    Get PDF
    The therapeutic efficacies of ART-18, ART-65, and OX-39, mouse antibodies of IgG1 isotype recognizing distinct epitopes of the p55 beta chain of the rat IL-2-R molecule, were probed in LEW rat recipients of (LEW X BN)F1 heterotopic cardiac allografts (acute rejection in untreated hosts occurs within 8 d). A 10-d course with ART-18 prolongs graft survival to approximately 21 d (p less than 0.001). Therapy with ART-65, but not with OX-39, was effective (graft survival approximately 16 and 8 d, respectively). Anti-IL-2-R mAb treatment selectively spared T cells with donor-specific suppressor functions; the CD8+ (OX8+ W3/25-) fraction from ART-18-modified recipients, and primarily the CD4+ (W3/25+ OX8-) subset from ART-65-treated hosts conferred unresponsiveness to naive syngeneic rats after adoptive transfer, increasing test graft survival to approximately 16 and 45 d, respectively. Concomitant administration of ART-18 and ART-65 to recipient animals in relatively low doses exerted a strikingly synergistic effect, with 30% of the transplants surviving indefinitely and 50% undergoing late rejection over 50 d. These studies provide evidence that anti-IL-2-R mAbs selectively spare phenotypically distinct T cells with suppressor functions. The data also suggest that in vivo targeting of functionally different IL-2-R epitopes may produce synergistic biological effects

    Molecular mechanism for the subversion of the retromer coat by the Legionella effector RidL

    Get PDF
    Microbial pathogens employ sophisticated virulence strategies to cause infections in humans. The intracellular pathogen Legionella pneumophila encodes RidL to hijack the host scaffold protein VPS29, a component of retromer and retriever complexes critical for endosomal cargo recycling. Here, we determined the crystal structure of L. pneumophila RidL in complex with the human VPS29?VPS35 retromer subcomplex. A hairpin loop protruding from RidL inserts into a conserved pocket on VPS29 that is also used by cellular ligands, such as Tre-2/Bub2/Cdc16 domain family member 5 (TBC1D5) and VPS9-ankyrin repeat protein for VPS29 binding. Consistent with the idea of molecular mimicry in protein interactions, RidL outcompeted TBC1D5 for binding to VPS29. Furthermore, the interaction of RidL with retromer did not interfere with retromer dimerization but was essential for association of RidL with retromer-coated vacuolar and tubular endosomes. Our work thus provides structural and mechanistic evidence into how RidL is targeted to endosomal membranes.ACKNOWLEDGMENTS: We thank Ander Vidaurrazaga (Centro de Investigación Cooperativa en Biociencias) for technical assistance and Devanand Bondage (National Institute of Child Health and Human Development) for proliferation assays of Legionella pneumophila. This study made use of the Diamond Light Source (Oxfordshire, United Kingdom), the European Synchrotron Radiation Facility (Grenoble, France), and the ALBA synchrotron beamline BL13-XALOC, funded in part by the Horizon 2020 programme of the European Union, iNEXT (H2020 Grant 653706). We thank all the staff from these facilities for technical and human support. This work was supported by the Spanish Ministry of Economy and Competitiveness Grant BFU2014-59759-R (to A.H.); the Severo Ochoa Excellence Accreditation SEV-2016-0644; and the Intramural Program of the Eunice Kennedy Shriver National Institute of Child Health and Human development (Projects ZIA HD001607 and ZIA HD008893). M.R.-M. is supported by a pre-doctoral fellowship from the Basque Government (PRE_2016_2_0249)

    Ectopic A-lattice seams destabilize microtubules

    Get PDF
    Natural microtubules typically include one A-lattice seam within an otherwise helically symmetric B-lattice tube. It is currently unclear how A-lattice seams influence microtubule dynamic instability. Here we find that including extra A-lattice seams in GMPCPP microtubules, structural analogues of the GTP caps of dynamic microtubules, destabilizes them, enhancing their median shrinkage rate by >20-fold. Dynamic microtubules nucleated by seeds containing extra A-lattice seams have growth rates similar to microtubules nucleated by B-lattice seeds, yet have increased catastrophe frequencies at both ends. Furthermore, binding B-lattice GDP microtubules to a rigor kinesin surface stabilizes them against shrinkage, whereas microtubules with extra A-lattice seams are stabilized only slightly. Our data suggest that introducing extra A-lattice seams into dynamic microtubules destabilizes them by destabilizing their GTP caps. On this basis, we propose that the single A-lattice seam of natural B-lattice MTs may act as a trigger point, and potentially a regulation point, for catastrophe

    Intrinsic dynamic behavior of fascin in filopodia

    Get PDF
    Author Posting. © American Society for Cell Biology, 2007. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 18 (2007): 3928-3940, doi:10.1091/mbc.E07-04-0346.Recent studies showed that the actin cross-linking protein, fascin, undergoes rapid cycling between filopodial filaments. Here, we used an experimental and computational approach to dissect features of fascin exchange and incorporation in filopodia. Using expression of phosphomimetic fascin mutants, we determined that fascin in the phosphorylated state is primarily freely diffusing, whereas actin bundling in filopodia is accomplished by fascin dephosphorylated at serine 39. Fluorescence recovery after photobleaching analysis revealed that fascin rapidly dissociates from filopodial filaments with a kinetic off-rate of 0.12 s–1 and that it undergoes diffusion at moderate rates with a coefficient of 6 µm2s–1. This kinetic off-rate was recapitulated in vitro, indicating that dynamic behavior is intrinsic to the fascin cross-linker. A computational reaction–diffusion model showed that reversible cross-linking is required for the delivery of fascin to growing filopodial tips at sufficient rates. Analysis of fascin bundling indicated that filopodia are semiordered bundles with one bound fascin per 25–60 actin monomers.This work was supported by a National Institutes of Health F31National Research Service Award NS055565-01 (to Y.S.A.), Northwestern University Pulmonary and Critical Care Division T32 (to T.E.S.), and National Institutes of Health grant GM-70898 (to G.G.B.)

    The Key Events Dose-Response Framework: Its Potential for Application to Foodborne Pathogenic Microorganisms

    Get PDF
    The Key Events Dose-Response Framework (KEDRF) is an analytical approach that facilitates the use of currently available data to gain insight regarding dose-response relationships. The use of the KEDRF also helps identify critical knowledge gaps that once filled, will reduce reliance on assumptions. The present study considers how the KEDRF might be applied to pathogenic microorganisms, using fetal listeriosis resulting from maternal ingestion of food contaminated with L. monocytogenes as an initial example. Major biological events along the pathway between food ingestion and the endpoint of concern are systematically considered with regard to dose (i.e., number of organisms), pathogen factors (e.g., virulence), and protective host mechanisms (e.g., immune response or other homeostatic mechanisms). It is concluded that the KEDRF provides a useful structure for systematically evaluating the complex array of host and pathogen factors that influence the dose-response relationship. In particular, the KEDRF supports efforts to specify and quantify the sources of variability, a prerequisite to strengthening the scientific basis for food safety decision making
    corecore