337 research outputs found
Cluster Variation Approach to the Random-Anisotropy Blume-Emery-Griffiths Model
The random--anisotropy Blume--Emery--Griffiths model, which has been proposed
to describe the critical behavior of He--He mixtures in a porous
medium, is studied in the pair approximation of the cluster variation method
extended to disordered systems. Several new features, with respect to mean
field theory, are found, including a rich ground state, a nonzero percolation
threshold, a reentrant coexistence curve and a miscibility gap on the high
He concentration side down to zero temperature. Furthermore, nearest
neighbor correlations are introduced in the random distribution of the
anisotropy, which are shown to be responsible for the raising of the critical
temperature with respect to the pure and uncorrelated random cases and
contribute to the detachment of the coexistence curve from the line.Comment: 14 pages (plain TeX) + 12 figures (PostScript, appended), Preprint
POLFIS-TH.02/9
Anisotropic Aerogels for Studying Superfluid He
It may be possible to stabilize new superfluid phases of He with
anisotropic silica aerogels. We discuss two methods that introduce anisotropy
in the aerogel on length scales relevant to superfluid He. First,
anisotropy can be induced with uniaxial strain. A second method generates
anisotropy during the growth and drying stages. We have grown cylindrical
98% aerogels with anisotropy indicated by preferential radial shrinkage
after supercritical drying and find that this shrinkage correlates with small
angle x-ray scattering (SAXS). The growth-induced anisotropy was found to be
out of phase relative to that induced by strain. This has
implications for the possible stabilization of superfluid phases with specific
symmetry.Comment: 6 pages, 4 figures, submitted to Quantum Fluids and Solids (QFS)
conference 200
Recommended from our members
Characterization of vanadium/silica and copper/silica aerogel catalysts
Vanadium/silica and copper/silica aerogels have been prepared using the sol-gel method followed by CO{sub 2} exchange and supercritical extraction. Structural properties of samples supercritically dried, oxidized and used in reactions studies conducted with a feed representing the average composition of automobile exhaust from a lean burn engine were investigated using laser Raman spectroscopy and temperature-programmed reduction. No evidence of crystalline V{sub 2}O{sub 5} was found for the vanadium/silica aerogel, freshly extracted, oxidized or following exposure to reaction conditions using these techniques. However, results obtained for the copper/silica sample indicate that changes in the structure of the copper species had occurred as the sample was oxidized and exposed to reaction conditions
Method for acquiring, storing and analyzing crystal images
A system utilizing a digital computer for acquiring, storing and evaluating crystal images. The system includes a video camera (12) which produces a digital output signal representative of a crystal specimen positioned within its focal window (16). The digitized output from the camera (12) is then stored on data storage media (32) together with other parameters inputted by a technician and relevant to the crystal specimen. Preferably, the digitized images are stored on removable media (32) while the parameters for different crystal specimens are maintained in a database (40) with indices to the digitized optical images on the other data storage media (32). Computer software is then utilized to identify not only the presence and number of crystals and the edges of the crystal specimens from the optical image, but to also rate the crystal specimens by various parameters, such as edge straightness, polygon formation, aspect ratio, surface clarity, crystal cracks and other defects or lack thereof, and other parameters relevant to the quality of the crystals
Recommended from our members
Processing Irradiated Beryllium For Disposal
The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages
Recommended from our members
Actinide partitioning studies using dihexyl-N,N-diethycarbamolymehtyl phosphonate and dissolved zirconium calcine
A baseline flowsheet capable of partitioning the transuranic (TRU) elements from dissolved zirconium calcines has been developed. The goal of the TRU partitioning process is to remove the TRUs from solutions of dissolved zirconium calcines to below the 10 CFR 61.55 Class A waste limit of 10 nCi/g. Extraction, scrub, strip, and wash distribution coefficients for several elements, including the actinides, were measured in the laboratory by performing equal volume batch contacts. A solvent containing diheyl-N, N- diethylcarbamoylmethyl phosphonate (CMP), tributylphosphate (TBP), and a branched chain hydrocarbon as the diluent were used to develop this process. A non-radioactive zirconium pilot-plant calcine was spiked with the TRUs, U, Tc, or a radioactive isotope of zirconium to simulate the behavior of these elements in actual dissolved zirconium calcine feed. Distribution coefficient data obtained from laboratory testing were used to recommend: (1) solvent composition, (2) scrub solutions capable of selectively removing extracted zirconium while minimizing actinide recycle, (3) optimized strip solutions which quantitatively recover extracted actinides, and (4) feed adjustments necessary for flowsheet efficiency. Laboratory distribution coefficients were used in conjunction with the Generic TRUEX Model (GTM) to develop and recommend a flowsheet for testing in the 5.5-cm Centrifugal Contractor Mockup. GTM results indicate that the recommended flowsheet should remove the actinides from dissolved zirconium calcine feed to below the Class A waste limit of 10 nCi/g. Less than 0.01 wt% of the extracted zirconium will report to the high- activity waste (HAW) fraction using the 0.05 M H{sub 2}C{sub 2}O{sub 4} in 3.0 M HNO{sub 3} scrub, and greater than 99% of the extracted actinides are recovered with 0.001 M HEDPA
Improved Functional Outcome After Peripheral Nerve Stimulation of the Impaired Forelimb Post-stroke
Lack of blood flow to the brain, i.e., ischemic stroke, results in loss of nerve cells and therefore loss of function in the effected brain regions. There is no effective treatment to improve lost function except restoring blood flow within the first several hours. Rehabilitation strategies are widely used with limited success. The purpose of this study was to examine the effect of electrical stimulation on the impaired upper extremity to improve functional recovery after stroke. We developed a rodent model using an electrode cuff implant onto a single peripheral nerve (median nerve) of the paretic forelimb and applied daily electrical stimulation. The skilled forelimb reaching test was used to evaluate functional outcome after stroke and electrical stimulation. Anterograde axonal tracing from layer V pyramidal neurons with biotinylated dextran amine was done to evaluate the formation of new neuronal connections from the contralesional cortex to the deafferented spinal cord. Rats receiving electrical stimulation on the median nerve showed significant improvement in the skilled forelimb reaching test in comparison with stroke only and stroke with sham stimulation. Rats that received electrical stimulation also exhibited significant improvement in the latency to initiate adhesive removal from the impaired forelimb, indicating better sensory recovery. Furthermore, axonal tracing analysis showed a significant higher midline fiber crossing index in the cervical spinal cord of rats receiving electrical stimulation. Our results indicate that direct peripheral nerve stimulation leads to improved sensorimotor recovery in the stroke-impaired forelimb, and may be a useful approach to improve post-stroke deficits in human patients
Determination of Soil Contaminant Transport Parameters Using Time Domain Reflectometry
Proceedings of the 1993 Georgia Water Resources Conference, April 20-21, 1993, Athens, Georgia.A recent study of rural shallow drinking wells found that 4.6% of the wells in the Piedmont region of Georgia had nitrate levels above the EPA recommended level of 10
ppm nitrate nitrogen (Tyson and Issac, 1991). The most likely sources of this nitrate are septic systems, fertilizers,
and manures. Nitrate transport models such as LEACHN (Wagenet and Hutson, 1989) can be used to investigate the contributions of these sources to groundwater contamination,
but the models require soil transport parameters that are difficult to measure. Another problem is that we are interested in predicting nitrate transport at the field
scale, but transport parameters are usually measured on a much smaller soil volume.Sponsored and Organized by: U.S. Geological Survey, Georgia Department of Natural Resources, The University of Georgia, Georgia State University, Georgia Institute of TechnologyThis book was published by the Institute of Natural Resources, The University of Georgia, Athens, Georgia 30602 with partial funding provided by the U.S. Department of Interior, Geological Survey, through the Georgia Water Research Institute as authorized by the Water Resources Research Act of 1984 (P.L. 98-242).
The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of the University of Georgia or the U.S. Geological Survey or the conference sponsors
Measuring scarce water saving from interregional virtual water flows in China
Trade of commodities can lead to virtual water flows between trading partners. When commodities flow from regions of high water productivity to regions of low water productivity, the trade has the potential to generate water saving. However, this accounting of water saving does not account for the water scarcity status in different regions. It could be that the water saving generated from this trade occurs at the expense of the intensified water scarcity in the exporting region, and exerts limited effect on water stress alleviation in importing regions. In this paper, we propose an approach to measure the scarce water saving associated with virtual water trade (measuring in water withdrawal/use). The scarce water is quantified by multiplying the water use in production with the water stress index. We assessed the scarce water saving/loss through interprovincial trade within China using a multi-region input-output table from 2010. The results show that interprovincial trade resulted in 14.2 km3 of water loss without considering water stress, but only 0.4 km3 scarce water loss using the scarce water concept. Among the 435 total connections of virtual water flows, 254 connections contributed to 20.2 km3 of scarce water saving. Most of these connections are virtual water flows from provinces with lower water stress index (WSI) to that with higher both water scarcity status and water productivity across regions. Identifying key connections of scarce water saving is useful in guiding interregional economic restructuring towards water stress alleviation, a major goal of China’s sustainable development strategy
- …