48 research outputs found

    Rottlerin stimulates apoptosis in pancreatic cancer cells through interactions with proteins of the Bcl-2 family

    Get PDF
    Rottlerin is a polyphenolic compound derived from Mallotus philipinensis. In the present study, we show that rottlerin decreased tumor size and stimulated apoptosis in an orthotopic model of pancreatic cancer with no effect on normal tissues in vivo. Rottlerin also induced apoptosis in pancreatic cancer (PaCa) cell lines by interacting with mitochondria and stimulating cytochrome c release. Immunoprecipitation results indicated that rottlerin disrupts complexes of prosurvival Bcl-xL with Bim and Puma. Furthermore, siRNA knockdown showed that Bim and Puma are necessary for rottlerin to stimulate apoptosis. We also showed that rottlerin and Bcl-2 and Bcl-xL inhibitor BH3I-2' stimulate apoptosis through a common mechanism. They both directly interact with mitochondria, causing increased cytochrome c release and mitochondrial depolarization, and both decrease sequestration of BH3-only proteins by Bcl-xL. However, the effects of rottlerin and BH3I-2' on the complex formation between Bcl-xL and BH3-only proteins are different. BH3I-2' disrupts complexes of Bcl-xL with Bad but not with Bim or Puma, whereas rottlerin had no effect on the Bcl-xL interaction with Bad. Also BH3I-2', but not rottlerin, required Bad to stimulate apoptosis. In conclusion, our results demonstrate that rottlerin has a potent proapoptotic and antitumor activity in pancreatic cancer, which is mediated by disrupting the interaction between prosurvival Bcl-2 proteins and proapoptotic BH3-only proteins. Thus rottlerin represents a promising novel agent for pancreatic cancer treatment

    Efficacy, Safety, and Durability of Voretigene Neparvovec-rzyl in RPE65 Mutation–Associated Inherited Retinal Dystrophy: Results of Phase 1 and 3 Trials

    Get PDF
    Purpose: To report the durability of voretigene neparvovec-rzyl (VN) adeno-associated viral vector–based gene therapy for RPE65 mutation–associated inherited retinal dystrophy (IRD), including results of a phase 1 follow-on study at year 4 and phase 3 study at year 2. Design: Open-label phase 1 follow-on clinical trial and open-label, randomized, controlled phase 3 clinical trial. Participants: Forty subjects who received 1.5Γ—1011 vector genomes (vg) of VN per eye in at least 1 eye during the trials, including 11 phase 1 follow-on subjects and 29 phase 3 subjects (20 original intervention [OI] and 9 control/intervention [CI]). Methods: Subretinal injection of VN in the second eye of phase 1 follow-on subjects and in both eyes of phase 3 subjects. Main Outcome Measures: End points common to the phase 1 and phase 3 studies included change in performance on the Multi-Luminance Mobility Test (MLMT) within the illuminance range evaluated, full-field light sensitivity threshold (FST) testing, and best-corrected visual acuity (BCVA). Safety end points included adverse event reporting, ophthalmic examination, physical examination, and laboratory testing. Results: Mean (standard deviation) MLMT lux score change was 2.4 (1.3) at 4 years compared with 2.6 (1.6) at 1 year after administration in phase 1 follow-on subjects (n = 8), 1.9 (1.1) at 2 years, and 1.9 (1.0) at 1 year post-administration in OI subjects (n = 20), and 2.1 (1.6) at 1 year post-administration in CI subjects (n = 9). All 3 groups maintained an average improvement in FST, reflecting more than a 2 log10(cd.s/m2) improvement in light sensitivity at 1 year and subsequent available follow-up visits. The safety profile was consistent with vitrectomy and the subretinal injection procedure, and no deleterious immune responses occurred. Conclusions: After VN gene augmentation therapy, there was a favorable benefit-to-risk profile with similar improvement demonstrated in navigational ability and light sensitivity among 3 groups of subjects with RPE65 mutation–associated IRD, a degenerative disease that progresses to complete blindness. The safety profile is consistent with the administration procedure. These data suggest that this effect, which is nearly maximal by 30 days after VN administration, is durable for 4 years, with observation ongoing

    Genome-Wide Association Analysis in Asthma Subjects Identifies SPATS2L as a Novel Bronchodilator Response Gene

    Get PDF
    Bronchodilator response (BDR) is an important asthma phenotype that measures reversibility of airway obstruction by comparing lung function (i.e. FEV1) before and after the administration of a short-acting Ξ²2-agonist, the most common rescue medications used for the treatment of asthma. BDR also serves as a test of Ξ²2-agonist efficacy. BDR is a complex trait that is partly under genetic control. A genome-wide association study (GWAS) of BDR, quantified as percent change in baseline FEV1 after administration of a Ξ²2-agonist, was performed with 1,644 non-Hispanic white asthmatic subjects from six drug clinical trials: CAMP, LOCCS, LODO, a medication trial conducted by Sepracor, CARE, and ACRN. Data for 469,884 single-nucleotide polymorphisms (SNPs) were used to measure the association of SNPs with BDR using a linear regression model, while adjusting for age, sex, and height. Replication of primary P-values was attempted in 501 white subjects from SARP and 550 white subjects from DAG. Experimental evidence supporting the top gene was obtained via siRNA knockdown and Western blotting analyses. The lowest overall combined P-value was 9.7E-07 for SNP rs295137, near the SPATS2L gene. Among subjects in the primary analysis, those with rs295137 TT genotype had a median BDR of 16.0 (IQR = [6.2, 32.4]), while those with CC or TC genotypes had a median BDR of 10.9 (IQR = [5.0, 22.2]). SPATS2L mRNA knockdown resulted in increased Ξ²2-adrenergic receptor levels. Our results suggest that SPATS2L may be an important regulator of Ξ²2-adrenergic receptor down-regulation and that there is promise in gaining a better understanding of the biological mechanisms of differential response to Ξ²2-agonists through GWAS

    Local Translation in Primary Afferent Fibers Regulates Nociception

    Get PDF
    Recent studies have demonstrated the importance of local protein synthesis for neuronal plasticity. In particular, local mRNA translation through the mammalian target of rapamycin (mTOR) has been shown to play a key role in regulating dendrite excitability and modulating long-term synaptic plasticity associated with learning and memory. There is also increased evidence to suggest that intact adult mammalian axons have a functional requirement for local protein synthesis in vivo. Here we show that the translational machinery is present in some myelinated sensory fibers and that active mTOR-dependent pathways participate in maintaining the sensitivity of a subpopulation of fast-conducting nociceptors in vivo. Phosphorylated mTOR together with other downstream components of the translational machinery were localized to a subset of myelinated sensory fibers in rat cutaneous tissue. We then showed with electromyographic studies that the mTOR inhibitor rapamycin reduced the sensitivity of a population of myelinated nociceptors known to be important for the increased mechanical sensitivity that follows injury. Behavioural studies confirmed that local treatment with rapamycin significantly attenuated persistent pain that follows tissue injury, but not acute pain. Specifically, we found that rapamycin blunted the heightened response to mechanical stimulation that develops around a site of injury and reduced the long-term mechanical hypersensitivity that follows partial peripheral nerve damage - a widely used model of chronic pain. Our results show that the sensitivity of a subset of sensory fibers is maintained by ongoing mTOR-mediated local protein synthesis and uncover a novel target for the control of long-term pain states

    Gluttony, excess, and the fall of the planter class in the British Caribbean

    No full text
    Food and rituals around eating are a fundamental part of human existence. They can also be heavily politicized and socially significant. In the British Caribbean, white slaveholders were renowned for their hospitality towards one another and towards white visitors. This was no simple quirk of local character. Hospitality and sociability played a crucial role in binding the white minority together. This solidarity helped a small number of whites to dominate and control the enslaved majority. By the end of the eighteenth century, British metropolitan observers had an entrenched opinion of Caribbean whites as gluttons. Travelers reported on the sumptuous meals and excessive drinking of the planter class. Abolitionists associated these features of local society with the corrupting influences of slavery. Excessive consumption and lack of self-control were seen as symptoms of white creole failure. This article explores how local cuisine and white creole eating rituals developed as part of slave societies and examines the ways in which ideas about hospitality and gluttony fed into the debates over slavery that led to the dismantling of slavery and the fall of the planter class
    corecore