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Abstract

Reversibility of airway obstruction in response to β2-agonists is highly variable among asthmatics, 

which is partially attributed to genetic factors. In a genome-wide association study of acute 

bronchodilator response (BDR) to inhaled albuterol, 534,290 single nucleotide polymorphisms 

(SNPs) were tested in 403 white trios from the Childhood Asthma Management Program using 

five statistical models to determine the most robust genetic associations. The primary replication 

phase included 1397 polymorphisms in three asthma trials (pooled n=764). The second replication 

phase tested 13 SNPs in three additional asthma populations (n=241, n=215, and n=592). An 

intergenic SNP on chromosome 10, rs11252394, proximal to several excellent biological 

candidates, significantly replicated (p=1.98×10−7) in the primary replication trials. An intronic 

SNP (rs6988229) in the collagen (COL22A1) locus also provided strong replication signals 

(p=8.51×10−6). This study applied a robust approach for testing the genetic basis of BDR and 

identified novel loci associated with this drug response in asthmatics.

Keywords

pharmacogenetics; asthma; bronchodilator response; genome-wide association study; albuterol

Introduction

Asthma is a complex respiratory disease characterized by hyper-responsiveness of the 

bronchial muscles, chronic inflammation and reversible narrowing of the airways. It affects 

approximately 300 million individuals worldwide and its prevalence is expected to increase 

to 400 million by 2025.1 Asthma is the most common chronic illness in children,2,3 

accounting for half a million hospitalizations a year in the United States. In 2007, asthma 

related health care costs in the US were estimated to be $56 billion, with the majority 

attributed to medications and hospitalizations.4 Taken together, asthma has a significant 

public health impact and steps towards its prevention or better management will decrease the 

overall disease burden.

β2-agonists are the most commonly used drugs for treating asthma.2 The therapeutic effects 

result from binding to the transmembrane β2-adrenergic receptor (β2-AR) located on airway 

smooth muscle cells to relieve bronchoconstriction. These are available as short-acting β2-

agonists (SABA; e.g. albuterol) for rescuing acute asthma symptoms or as long-acting β2-

agonists (LABA; e.g. salmeterol and formoterol) for controlling chronic asthma that is 

usually administered in combination with an inhaled corticosteroid. The reversibility of 

airway obstruction in response to these medications, known as bronchodilator response 

(BDR), may be measured as a change in lung function (forced expiratory volume in one 

second (FEV1)) or as fall in peak expiratory flow rate (PEFR), indicating a down-regulation 

of B2-agonist responsivity (tachyphylaxis) with prolonged drug use. Inter-individual 

variability in response to these drugs have been previously described and research suggests 

that genetic variants are major contributing factors.3 The identification of genetic loci 

associated with BDR to β2-agonists will help to facilitate personalized asthma treatment 

regimens.
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Pharmacogenetic investigations of BDR have identified a number of genetic associations for 

this variable drug response. The majority had been candidate gene studies, which reported 

genetic associations to SNPs and/or haplotypes in the arginase 1 (ARG1) locus,5 the β2-

adrenergic receptor (ADRB2) gene,6–9 the corticotropin-releasing hormone receptor 

(CRHR)-2 locus,10 and the adenylyl cyclase type 9 (AC9) gene.11 A recent genome-wide 

association study (GWAS) of BDR by our group identified a functional variant in the serine-

rich 2-like (SPATS2L) gene, albeit the mechanism by which it regulates BDR remains 

unknown.12 In this manuscript, we expand on the previous literature by using a novel 

approach to identify genetic associations with BDR (defined by a change in lung function) 

whereby we apply five statistical models in a GWAS of this drug response phenotype to 

decrease the likelihood of false positive associations. Novel aspects of the current GWAS 

include use of genetic data from the parents of asthmatics in a family-based test, which is 

more robust against population stratification, as well as analysis of 11 BDR measures for 

each subject taken over a four year period in addition to BDR at randomization (taken upon 

entry into the clinical trial). Moreover, we considered both additive and recessive 

transmissions of the associated alleles. We then pooled the results from these multiple 

genome-wide analytical models to identify common genetic association signals to carry 

forward for replication analysis in additional asthma populations. This manuscript describes 

the findings of our innovative GWAS of BDR in asthmatic subjects.

Methods

Asthma Trial Populations

The asthma trial populations are summarized in Table 1 and details are available in the 

Supplemental Material. All patients or their legal guardians consented to each study protocol 

and ancillary genetic testing. All studies were approved by the respective Institutional 

Review Boards and/or Ethics Committees of the participating institutions.

Initial GWAS Population—A total of 403 non-Hispanic white asthmatic children and 

their parents from the Childhood Asthma Management Program (CAMP)13,14 were 

successfully genotyped on the Illumina HumanHap550v3 BeadChip (San Diego, CA).15 

BDR at randomization were conducted for each proband upon entry into the trial following 

2 inhalations of albuterol. A total of 11 longitudinal BDR values were measured in a subset 

of 171 asthmatics randomized to inhaled albuterol therapy as needed over four years of this 

clinical trial. Genome-wide association analysis included 534,290 autosomal SNPs that had 

passed quality control metrics (see Supplemental Material).

Primary Replication Populations—A total of 1536 SNPs were selected for genotyping, 

of which 1397 were successful, in three non-Hispanic white adult asthma trials (pooled 

n=764) using the Illumina GoldenGate Custom Array (Illumina Inc., San Diego, CA). SNP 

selection criteria are detailed below (Statistical Methodology). These replication 

populations included: 1) the Asthma Trial (AT, n=444)16,17; 2) the Leukotriene modifier or 

Corticosteroid or Corticosteroid Salmeterol (LOCCS, n=165) trial18; and 3) the 

Effectiveness of Low Dose Theophylline as Add-on Treatment in Asthma (LODO, n=155) 
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trial.19 BDR at randomization was conducted for each subject upon entry into these clinical 

trials.

Secondary Replication Populations—A total of 13 SNPs with one-sided p-values < 

0.05 (based on the direction of association in CAMP) in the primary replication analysis 

were further tested in two additional asthma trials: 1) the Childhood Asthma Research and 

Education Network (CARE, n=215) and 2) the Asthma Clinical Research Network (ACRN, 

n=241).20 As these individuals had been genotyped on the Affymetrix Genome-Wide 

Human SNP Array 6.0 (Santa Clara, CA), imputed data was used that was generated for the 

HapMap Phase 2 Release 22 SNPs21 by applying the Markov Chain Haplotyping (MaCH) 

software.22 Finally, eight of these 13 SNPs were further tested in the Genetics of Asthma in 

Costa Rica Study (GACRS), which were successfully genotyped on the 

HumanOmniExpress-12v1_A chip.23 BDR at randomization was conducted for each subject 

upon entry into these clinical trials.

Statistical Methodology

The primary outcome measure of all analyses was BDR to the inhaled s2-agonist albuterol, 

which was calculated as the percent change in forced expiratory volume in one second 

(FEV1): BDR=100 × [(postFEV1-preFEV1)/preFEV1], where preFEV1 is the lung function 

before albuterol treatment (baseline) and postFEV1 is the lung function following albuterol 

treatment. The overall analysis strategy is presented in Figure 1. To compensate for the 

limited statistical power given the small sample size of the CAMP trial, we used five 

statistical models to identify the most robust genetic associations: generalized linear model 

of BDR in 403 probands, using recessive (1) and additive (2) models; mixed model of 11 

repeated measures of BDR over four years in 171 individuals randomized to as-needed 

inhaled β2-agonist, using recessive (3) and additive (4) models; and family-based association 

test (FBAT) of BDR at randomization in 403 CAMP parent-offspring trios (5). All models 

were adjusted for age, sex, and baseline preFEV1 and model 5 was additionally adjusted for 

height. Each SNP was given a score of 0 to 5 based on the total number of p-values below 

0.05 from all five association tests. All SNPs scoring 5 (n = 437) were carried forward for 

genotyping in the primary replication cohort but those scoring 4 were then ranked according 

to their p-values from the FBAT analysis as this model is robust against population 

stratification. No SNPs scoring below 4 were included for replication. All tests using 

generalized linear (additive and recessive) models were performed in PLINK (http://

pngu.mgh.harvard.edu/purcell/plink/)24 and included SNPs with minor allele frequencies 

(MAF) ≥ 0.05. FBAT applied a pedigree-based analysis tool (PBAT) previously 

described.25 All replication analyses used a single measure of BDR at randomization, with 

adjustments for age, sex, height and baseline preFEV1. Multiple comparisons were adjusted 

using the Liptak weighted Z method.26 Additional details are available in the Supplemental 

Material.

Expression Quantitative Trait Analysis

Microarray data from immortalized lymphoblastoid cell lines of 117 asthmatics (non-

Hispanic white CAMP subjects), spotted on the Illumina HumanRef8v2 microarray 

BeadChips, were used to test the correlation of genetic variants with gene expression. These 
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cells were cultured and treated with ethanol (sham) as a control for differential analysis with 

corticosteroid (dexamethasone) treated cells for a separate pharmacogenetic investigation 

(unpublished data). The microarray data from the sham arm of this experiment was vst-

transformed and quantile normalized using the Lumi package in Bioconductor.27 A cis-

expression quantitative trait locus (eQTL) was defined as a SNP that was correlated with the 

expression of a gene within 50 kb. A trans-eQTL was a SNP correlation with a transcript 

located more than 50 kb away or on a separate chromosome entirely.

Results

The baseline characteristics of all asthma populations including CAMP, the three primary 

replication trials and the three secondary replication populations are shown in Table 1. 

Whereas the initial GWAS using CAMP consisted of childhood asthmatics, the replication 

populations included both childhood (CARE and GACRS) and adult asthmatics (pooled AT/

LOCCS/LODO and ACRN). It is also notable that the adult asthma populations had fewer 

males and lower pre-bronchodilator FEV1 percent predicted (Pre-BD FEV1pp) values, 

which was previously correlated with higher BDR.28 To compensate for the variability in 

baseline preFEV1 across populations, we adjusted each association test for this variable in 

addition to accounting for it in our phenotype definition (BDR=100×[(postFEV1-preFEV1)/

preFEV1]).

Genome-wide analysis in CAMP

A plot of the –Log10(p-values) against the chromosomal location of each SNP from the 

family-based association (FBAT) analysis is shown in Figure 2. A quantile-quantile plot of 

the expected p-values of the FBAT analysis under the null hypothesis and the actual 

observed p-values illustrates that the majority of p-values were greater than expected by 

chance, suggesting that the test was conservative [Supplemental Figure 1]. However, there 

are several p-values less than what was expected by chance. For example, the lowest p-value 

was 5.28×10−7 for rs8112048 located 3′ of the zinc finger protein 14 (ZNF14) gene but this 

did not meet genome-wide significance. In addition, we noted that many SNPs in previously 

implicated genes (ARG1, ADRB2, CRHR-2, and AC9)5–11 were absent from our GWAS due 

to differences in genotyping platforms. Of the four markers included in our GWAS 

(rs1042713 in ADRB2, rs4723002 and rs226716 in CRHR2, and rs2230739 in AC9), 

nominal association was found for rs1042713 in ADRB2 (p < 0.02), which is the most 

investigated locus for BDR. Finally, the genomic inflation factor estimate was 1.01, 

demonstrating minimal population stratification.

Replication Analyses

Data for the 1397 replication SNPs from the three adult asthma trials were pooled for 

analysis to maximize the statistical power for detecting associations. A total of 13 SNPs 

replicated in the same direction as the initial GWAS population (CAMP) and were carried 

forward for analysis in the secondary replication phase (Table 2). The intergenic SNP, 

rs11252394, with a p-value of 0.0099 (beta = 3.1) from the additive model in CAMP, had a 

one-sided p-value of 1.21×10−6 in the primary replication phase, which remained significant 

following Bonferroni correction for multiple comparisons. However, this SNP did not 
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replicate in the secondary replication phase. Next, nominal association signals (p-values < 

0.05) were derived for an intronic SNP, rs6988229, in the collagen type XXII alpha 1 

(COL22A1) gene in CAMP (recessive p-value = 0.004, beta = 3.26). This SNP further 

replicated across all asthma populations except for CARE (Liptak combined p = 8.51E-06). 

Finally, five additional SNPs showed marginal association (p < 0.05) in the primary 

replication and one of the three secondary replication populations: rs166330, rs166332, 

rs17495520, rs6002674, and rs1522113. The latter marker (additive p-value = 0.014 and 

beta = 3.23 in CAMP), is located in intron 8 of CLOCK and in perfect linkage 

disequilibrium (correlation coefficient (r2) of 1.0 in CAMP) with a non-synonymous variant 

(rs34897046; Serine208Cysteine (S208C)) in exon 9 of the same gene.29 The top 13 SNPs 

explain 23.8% of the overall genetic variance in BDR, based on the correlation coefficient 

for each analysis. This calculation assumed that the genetic contribution of each SNP is 

independent of the other genetic associations.

Analysis of microarray data from lymphoblastoid cell lines from a subset of CAMP subjects 

determined that the missense variant in CLOCK is associated with variable gene expression 

of both CLOCK (p-value = 0.05) and one of its downstream effectors Period 2 gene (PER2, 

p-value = 0.003) [Supplemental Figure 2]. Individuals with one mutant allele (CG genotype, 

n = 20) had greater expression of both CLOCK and PER2 compared to individuals without 

this minor allele (GG genotype, n = 94). The SNP rs6988229 in the COL22A1 locus on the 

other hand did not demonstrate any cis-regulatory effects, however, it is correlated with the 

expression of multiple other genes (trans-acting effects on gene expression). This includes 

another member of the G protein-coupled receptor superfamily (GPR110). The top five 

trans-effects of each of the 13 SNPs from Table 2 are shown in Supplemental Table 1. These 

results did not suggest a regulatory role for the intergenic SNP on chromosome 10 

(rs11252394). While these associations with gene expression suggest functional effects of 

some of our associated polymorphisms, further investigation is necessary to validate their 

functional effects and the mechanism by which they might regulate BDR.

Discussion

This manuscript describes a comprehensive GWAS of treatment response to β2-agonists in 

asthmatics, which identifies novel pharmacogenetic loci associated with clinical response 

variability. Due to the limited size of the asthma drug trial populations, which is common in 

pharmacogenetic investigations, we implemented a novel strategy to select SNPs for 

replication. Specifically, we prioritized SNPs by evaluating p-values from 5 different 

statistical models, thereby taking advantage of the longitudinal nature of the phenotypic 

data, the entire sample at randomization, as well as the genotype data from the parents. 

SNPs with the lowest p-values (< 0.05) across all five statistical models were judged to 

represent the most robust associations, followed by SNPs yielding p-values < 0.05 in four of 

the five analyses. The latter were prioritized by FBAT p-values for replication analysis. A 

total of 1397 were successfully genotyped and tested for replication in three independent 

clinical trials. The top 13 replicated SNPs were subsequently tested for association with 

BDR in three secondary asthma populations (Table 2). While only one intergenic SNP 

significantly replicated in the primary phase, six SNPs provided nominal p-values < 0.05 in 
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both the primary replication phase and in one or more of the secondary replication 

populations, including intronic SNPs in the COL22A1 and CLOCK genes.

The use of five statistical models in our initial GWAS is an innovative approach for 

identifying genetic associations for BDR in asthma. As each statistical model has unique 

strengths and weaknesses, our rationale for ranking SNPs for replication based on p-values 

from all five models was to identify the most robust associations (i.e. those most likely to 

replicate and represent true pharmacogenetic associations). For example, population-based 

tests are more powerful to detect associations by including more individuals than the number 

of informative families used in the FBAT, but the former is more vulnerable to population 

stratification. Thus, FBAT allows us to confirm SNP associations that are not influenced by 

population stratification. In addition, we were able to take advantage of the longitudinal 

BDR data recorded at 11 time points over the four year clinical trial for a subset of our 

population to confirm associations that are repeatable within individuals over time. 

Moreover, we opted to include a recessive model because while an additive genetic model 

can easily identify dominant transmissions, it does not identify recessive transmissions as 

easily. We believe that this novel approach reduced the likelihood of false-positive 

association signals.

The strongest association signal that significantly replicated in the primary replication phase, 

albeit not associated across the secondary replication populations, was an intergenic SNP 

rs11252394 (Liptak p-value = 1.98E-07). Despite it being not proximal to a gene within 50 

kb, a closer look at this genomic region revealed several excellent biological candidates 

within 2.5 Mb including Protein Kinase C theta (PRKCQ), inter-leukin receptors (IL15RA, 

IL2RA) and Krüppel-like factor 6 (KLF6). All four genes have been previously reported to 

regulate pulmonary inflammation using in vitro cellular and murine models. In fact, a 

PRKCQ antagonist was investigated by Wyeth Research as a novel treatment for asthma 

given the role of this gene in airway inflammation and hyper-responsiveness.30–32 Inhibition 

of IL15RA and IL2RA in mice demonstrated decreased lung inflammation.33,34 Finally, 

blocking of KLF6 in vitro decreased Transforming Growth Factor β (TGFβ) production that 

is correlated with airway remodeling and asthma development.35 While rs11252394 is not 

known to regulate the expression of any of these genes, nor is it known to be in LD with 

SNPs within these loci, further investigation is warranted to identify the causative variant, if 

any, in this genomic region which may underlie this association signal.

Another association signal that replicated, albeit only marginally, in the primary replication 

phase and across two of the secondary replication trials, was an intronic SNP (rs6988229) in 

the COL22A1 gene. Little is known about this gene other than it encodes a protein that acts 

as a cell adhesion ligand for skin epithelial cells and fibroblasts, further investigations are 

necessary to determine how genetic variants at this locus might influence BDR. Cis-eQTL 

analysis indicates that this SNP does not regulate expression of the COL22A1 transcript (p= 

0.86). However, this SNP is significantly correlated with the expression of multiple other 

genes [Supplemental Table 1]. This includes another member of G protein-coupled receptor 

superfamily (GPR110), to which the β2-adrenergic receptor also belongs, which is known to 

regulate smooth muscle contractions and relaxations.36 Multiple splice variants of this gene, 
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like many other members of this large gene family, has been shown to be expressed at 

significantly higher levels in airway smooth muscle cells.37

While the polymorphism in the CLOCK gene (rs1522113) was only marginally associated 

with BDR at randomization in CAMP using the additive model (p-value = 0.014), and 

nominally replicated in AT/LOCCS/LODO and CARE, it is an excellent biological 

candidate for regulating bronchodilator response in asthmatics. Previous studies suggest that 

CLOCK expression and β2-agonists affect the expression of circadian rhythm genes, which 

regulate asthma symptoms. Embryonic fibroblast cells from mice homozygous for mutant 

CLOCK expressed circadian rhythm genes in a non-cyclic manner, a phenotype that was 

rescued by ectopic expression of CLOCK.38 DeBruyne et al. reported that the circadian 

rhythm in peripheral tissues such as the liver and lung are also regulated by CLOCK.39 

CLOCK binds to the E-box enhancer located 5′ of circadian genes such as the Periods (PER) 

1, 2, and 3 to regulate their expression.40β2-agonists have also been shown to induce the 

expression of human period 1 (hPER1) gene in bronchial epithelial BEAS-2B cells.41 

Furthermore, the administration of β2-agonists, particularly long-acting, reduces nocturnal 

asthma.42,43β2-agonists have also been shown to regulate the expression of these circadian 

rhythm genes through the phosphorylation of cAMP responsive element binding (CREB) 

protein which bind to CRE 5′ of these genes.40 The role of the circadian rhythm in asthma is 

apparent in that the narrowing of the airways are more severe between midnight and early 

morning hours.44 In addition, nocturnal asthma exacerbations are commonly experienced 

between 4 AM and 8 AM,43 which may be the combined effect of the circadian clock and 

the diminishing effect of asthma medications throughout the night.

In addition to a genetic association between rs1522113 and BDR in asthma, we determined 

that this intronic SNP is in perfect linkage disequilibrium with a missense variant in exon 9 

(rs34897046; S208C), which is predicted to result in the loss of a (Serine) phosphorylation 

site.45 This coding SNP is predicted to be “deleterious” by SIFT (Sorting Intolerant From 

Tolerant)46 or “possibly damaging” by PolyPhen2.47 Finally, analysis of microarray data 

from lymphoblastoid cell lines of CAMP subjects indicates a marginal association between 

the mutant allele (208C) and increased expression of CLOCK (p value = 0.054), as well as 

increased expression of a downstream circadian rhythm gene Period 2 (PER2, p value = 

0.003) [Supplemental Figure 2]. While this suggests that the associated polymorphism in 

CLOCK may be functional, further experiments are necessary to investigate the regulatory 

potential of this variant in the CLOCK pathway and the mechanism by which it modulates 

BDR.

While this manuscript represents a comprehensive GWAS of BDR response in asthmatics 

aimed at identifying the most robust genetic associations for replication in additional asthma 

trials, there were several limitations. First, our initial GWAS used the phenotype of acute 

response to a short-acting β2-agonist (BDR at randomization) that was taken in all CAMP 

probands at the start of the study as well as repeated measures of BDR in a subset of the 

CAMP probands who were randomized to β2-agonist as needed over the four years of the 

trial. For the replication cohorts, however, we only used BDR measured upon entry into the 

respective studies as our replication samples did not have longitudinal data. Therefore, our 

replication results may not identify BDR associations in asthma patients taking β2-agonist 
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over long periods of time. Second, the mean pre-bronchodilator FEV1 percent predicted 

values varied across the asthma populations (Table 1). Specifically, those for all childhood 

asthma trials (CAMP, CARE and GACRS) were noticeably higher than those of adult 

asthma trials (AT, LOCCS, LODO and ACRN), which was expected. However, pre-

bronchodilator FEV1 was adjusted for in our definition of BDR as well in all statistical 

analyses by including it as a covariate. Finally, baseline medications and recruitment criteria 

varied across some of the populations. For example, the LOCCS trial had completed a run-in 

period of 4–6 weeks during which they were administered an inhaled corticosteroid that 

might have improved their lung function, resulting in reduced BDR. Finally, all participants 

of the AT trial had a minimum BDR of 15% or greater. We addressed these differences 

across our trial populations in the pooled analysis of AT/LOCCS/LODO by coding each trial 

differently. Some of the trials (CAMP, AT, LODO, GACRS) had wash-out periods during 

which they were taken off their regular asthma therapies but were permitted to use rescue 

medications as needed. Others such as CARE and ACRN had no wash-out periods. Thus, 

differences in medical histories may have influenced BDR. However, we believe that these 

differences further demonstrate the generalizability of our association results.

Although the aim of this GWAS was to identify novel loci for BDR, we noted that this study 

does not replicate all of the prior associated SNPs.5–11 These results were expected as it is 

unusual for all of the candidate genes to be significant in any one replication population. For 

some of these previously associated loci, the genetic effect sizes were very modest, making 

these genetic variants more difficult to identify. Power simulations, based on our sample 

sizes (n = 403, 764, and 1,048) and the number of statistical tests, estimated that we had 

sufficient power (>90%) to identify common SNPs (MAF > 0.1) with effect estimates of 3 

percent or greater. In addition, there was not always adequate LD coverage for some of the 

SNPs that were previously identified at candidate genes. Therefore, it was difficult to assess 

these genetic associations in our CAMP samples. Specifically, additional variants were 

genotyped in earlier studies using custom platforms that were not included on the Illumina 

HapMap550K Beadchip array used for the current GWAS. For example, none of the 

previously associated SNPs in ARGI were tested in the current GWAS. In fact, only four of 

the dozen SNPs previously implicated in the remaining three genes (ADRB2, CRHR2 and 

AC9) were directly tested in our GWAS. However, these did not yield high ranking scores 

for replication because we had selected SNPs based on p-values across five different 

statistical models. Furthermore, some of the earlier studies had reported a haplotype effect 

that was not tested in our study. Finally, our GWAS did not replicate the findings of the 

previous BDR GWAS, which reported association with SPATS2L.12 A major difference in 

the current study is the combined analysis of longitudinal BDR measures as well family-

based data in addition to BDR at randomization using five statistical models, while the 

previous GWAS applied only one test of BDR at randomization.

Using a novel genome-wide association analysis method for investigating BDR in asthma, 

we have identified several genetic loci for further investigation. Among these findings is an 

intergenic SNP, rs11252394, that is located near multiple genes previously correlated with 

lung inflammation and therefore, are potential regulators of asthma. Other potentially 

interesting associations that were marginally associated with our drug response phenotype 
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across multiple trials were intronic SNPs within the COL22A1 and CLOCK loci. While 

microarray data indicate potential cis- or trans-effects of these SNPs, further investigation is 

merited to determine their biological significance and potential roles in modulating 

bronchodilator response to β2-agonists.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An overview of the genome-wide analyses methods and replication strategies used. The 

initial GWAS in CAMP applied five statistical models (linear regression of BDR at 

randomization in 403 asthmatics using additive and recessive models, longitudinal mixed 

models of 11 repeated BDR measures in 171 probands using additive and recessive models, 

and a family-based association test of BDR at randomization in 403 trios). A total of 1536 

SNPs providing p-values < 0.05 from five or four of these models (the latter rankd by FBAT 

p-values) were selected for genotyping and replication in LOCCS/LODO/AT (n=764). The 

13 replicated SNPs (one sided p-values < 0.05) were further tested in ACRN, CARE and 

GACRS.
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Figure 2. 
The distribution of BDR at randomization across all asthma trial populations. BDR is 

defined as a percent change in lung function (FEV1) in response to inhaled albuterol across 

all asthma trial populations.
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Figure 3. 
Manhattan plot of –Log10(p-value) for the FBAT analysis of BDR using 403 parent-

offspring trios with 534,290 SNPs. Similar plots were generated for the other four statistical 

models. The analysis was adjusted for age, gender, height, and baseline preFEV1.
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