
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1978

Design and implementation of a data base
management system application for the small user.
Stephen J. Tillman

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Tillman, Stephen J., "Design and implementation of a data base management system application for the small user." (1978). Theses and
Dissertations. Paper 2154.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F2154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2154?utm_source=preserve.lehigh.edu%2Fetd%2F2154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

DESIGN AND IMPLEMENTATION OF A

DATA BASE MANAGEMENT SYSTEM APPLICATION

FOR THE SMALL USER

by

Stephen J. Tillman

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Industrial Engineering

Lehigh University

1978

ProQuest Number: EP76427

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76427

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in

partial fulfillment of the requirements for the degree

of Master of Science in Industrial Engineering.

7-29-70
(date)

Professor Ben L. Wechsler
Major Thesis Advisor

Professor George E. Kane
Chairman, Department of
Industrial Engineering

ii

Acknowledgments

To Dr. Ben L. Wechsler, major thesis advisor, and

one of the finest teachers it has been the

author's privilege to know and learn from.

To Dr. George C. Driscoll, minor thesis advisor,

whose cooperation made working on the case

study almost painless.

To Wilkes College, for providing the sabbatical

leave and other support necessary to complete

the work.

To Irene Cocco, for typing the manuscript.

The author wishes to express his sincere appreciation

to the above-mentioned, plus all the others who

directly or indirectly, helped make this possible

iii

TABLE OF CONTENTS

Pa pre

ABSTRACT 1

1. INTRODUCTION (CHAPTER 1)

1.1 General Background 2

1.2 Statement of the Problem 8

1.3 Method of Solution 9

1.4 Objectives 10

2. THE CASE STUDY (CHAPTER 2)

2.1 Case Study Environment 11

2.2 The Old System 13

2 . 3 Case Study Object ives 19

2.4 DBMS Application Decision 20

2.5 Getting Started 22

2.6 The Data Base Design 26

2 . 7 Application Programs 30

2.7.1 The Loading Program 31

2.7.2 The Update and Query Programs... 34

2.7.3 The Interface Program 38

2.8 Privacy and Security 41

2.8.1 Privacy 41

2.8.2 Security 41

iv

Page

3. DBMS APPLICATION GUIDELINES (CHAPTER 3)

3.1 General Considerations 43

3.1.1 User Participation 43

3.1.2 Plan 45

3.1.3 Trade-offs 46

3.1.4 Odds and Ends 46

3.2 Pre-Design Phase 47

3.3 Design 49

3.3.1 A Workable Design 49

3.3.2 The Old System 50

3.3.3 The Loading Plan 51

3.4 Application Programs 52

3.5 Documentation and Manuals 56

3.5.1 Documentation 56

3.5.2 General Information Manual 56

3.5.3 Application Program Manuals 58

3.6 Implementation 59

3.7 Items for Further Study 60

3. 8 Summary 63

BIBLIOGRAPHY 66

APPENDICES

A Schema Data Description 68

B Data Dictionary 81

Page

C Documentation and Flowchart for
Loading Program 98

D Documentation and Flowchart for
Update Program 110

E Documentation and Flowchart for
Inquiry Program 167

F Documentation and Flowchart for
Interface Program 178

G User Manuals 197

H General Information Manual 223

VITA 233

VI

ABSTRACT

This thesis presents general guidelines for

the development of a data base management system

application. The guidelines are aimed toward a con-

cultant working for a small user group within a large

organization which has in-house data base management

system software. The guidelines are based upon the

author's experience in designing and implementing

the membership data base for the "Planning and Design

of Tall Buildings" research project. The guidelines

are presented according to which phase of the develop-

ment effort they are best suited for. The categories

are the pre-design phase, the schema design, the

application programs, documentation and manuals, and

implementation. In addition, there is a general

category of guidelines, which cut across all phases of

the system development.

Along with the guidelines, several areas of

future study are presented. These areas are standard

topics which arise in many data processing system

developments. Because of the pecularities of the case

study, they were either not considered, or were

considered in such a way that the case study did not

offer sufficient insight for generalizing.

1

CHAPTER 1

Introduction

1.1 General Background

As organizations grow in size and complexity,

their informational needs grow with them. In fact, the

growth of informational requirements is generally faster

than the growth of the organization. As the amount of

information increases, more information is needed to

keep track of the information already accumulated and

being further accumulated. In addition, societal

problems, government regulations, and other outside

pressures further increase the need for information,

data processing, report generation, and so on.

The fantastic growth of computer technology has

given organizations the tools necessary to solve, or at

least alleviate, their information problem. At the same

time it has brought with it another problem—how to make

use of the tools so that "the cure does not become worse

than the disease." Martin, in [12], says "Already ...

about 20% of the U.S. gross National Product is devoted

to the collection, processing, and dissemination of

information and knowledge ..." Martin is referring to

2

the total handling of all information, not Just computer

based information. The fact is, however, that in most

medium to large organizations, and in many small ones,

computers are the backbone of the information system.

Hardware costs, software costs, special personnel costs,

the cost of such supporting equipment as punch cards,

paper tape, magnetic tape and discs, and the costs of

maintaining the physical environment of the computer

system are just some of the costs of maintaining a

computer based information system. The share of the

information expenditures that go toward the computer is

a significant fraction of the total information expendi-

tures, and that fraction is growing.

Initially computers in business were used

largely as accounting aids. As information needs and

computer technology grew, and as the users became more

aware of the capabilities and uses to which the new

machines could be put, sophisticated applications requir-

ing complex software and large specially structured data

files came into being. At first individual applications

were treated as though they were largely independent of

one another. Each application had its own programs and

data files even though there was often a large amount of

overlap in both input and output. This situation inevit-

ably led to problems of redundancy, inconsistency, excess

storage and processing costs, expensive time delays, and

in general a huge maintenance problem. Some organiza-

tions were finding that more than 80% of an exponen-

tially increasing data processing budget was going

toward maintaining an increasingly inadequate, and

massive, system, and furthermore the maintenance percent-

age was on the increase. (See [12], p. 46) The sheer

size and disorganization of the data processing system

made new programming development extremely difficult and

costly. In those cases where a new application, with

its programs and data files, was successfully developed,

the global problem was found to be even worse than

before. The new programs and files added to the already

overburdened maintenance facilities of the organization.

More than one organization folded, at least partially,

because it could not solve its information problem.

Some sort of a systematic approach has to be

taken to make optimal (or as nearly optimal as possible)

use of an organization's informational, and in particular

data processing, resources. An organization does not

want to limit growth, but the growth should be controlled.

Standards have to be set and maintained. One method of

maintaining a meaningful set of standards is to build

applications around a well designed organizational data-

base contained within a well designed organization wide

information system. Burch and Strater in [4] give an

overview of the possible designs of general information

systems, and the use of the computer as a major part of

the systems. The technology of the 70's has increasingly

led toward the use of on-line computer systems, and the

data base management systems. Yourdon, in [15], dis-

cusses the design of on-line systems in general ,

including a brief discussion of data base management

systems. Martin gives a fairly thorough overview of data

base management systems in [12] , and goes into details of

design considerations and related matters in [11].

Theoretically a data base management system

(DBMS) provides one large central data bank. All data

for all applications is present in a standard format.

The data that a given application needs is easily acces-

sible, but all other data is protected from unauthorized

access. Changes in data organization and content do not

affect any application program, and application programs

may be changed without requiring the data base to be

restructured. In practice, unfortunately, this has not

come to pass. What has happened, however, is the develop-

ment of several smaller data bases, designed around

specific functional needs and/or common data usage. Each

of the smaller data bases serves, in general, several

applications each.

The technology necessary for a DBMS is not

trivial. Generally organizations which try to design

their own DBMS have great difficulties (see case study C

p. 388 in Kroenke [10]) or at the very least excess

costs. Therefore when an organization makes the decision

to implement a DBMS, it usually decides to take advantage

of one of the commercial software packages available,

either from a computer vendor or from an independent

company (see [6] for an independent comparison of several

available packages). The packages vary in complexity and

cost. An example of a successful, but relatively simple

and inexpensive system is TOTAL (see [5]), which is

marketed by Cincom Systems, Inc. One of the more com-

plex successful systems is IMS (see [9]), marketed by IBM,

but available on some other hardware also. A general

guideline for comparison is the CODASYL data base task

group (DBTG) system (see [14]), which was designed as a

standard for a general purpose DBMS. Many information

systems specialists (see [12] , p. 148) debate the effec-

tiveness of using the CODASYL DBTG system as a standard,

but at the very least it does provide a common benchmark

against which other systems can be measured.

Once an organization has made the decision to

implement a DBMS, there remains the problem of getting the

users to at least consider it in performing their

»
applications. The implementation decision will have

been made, presumably, with several specific applica-

tions in mind. The users involved with those applications

would probably have little choice about whether or not to

make use of the company DBMS, and in any case they

probably would want to use it. Within most organiza-

tions, however, there are many diverse and independent

computer applications. The users connected with appli-

cations that are largely independent of the initial DBMS

applications could choose to avoid the in-house DBMS, at

least for a while. Granted that a DBMS is not always

the optimal choice, one has to at least consider a DBMS

application before one is in a position to make an

intelligent decision.

Even if it is assumed that the design personnel

of an organization's EDP department are completely

familiar with and know how to make best use of a DBMS

(not always a valid assumption), the users are generally

unsophisticated in terms of the capabilities and ease of

applicability of a DBMS. While they may be willing to

believe (because someone told them so) that the organi-

zation as a whole is better off with a DBMS, they are

often not able to see how it can be applied in their own

case. In many cases there is also, quite understandably,

the fear of the unknown. The users have to be taught not

only that a DBMS application can be of use to them, but

that the application can be carried through without undue

strain and mystification, and they will be pleased with

the eventual results.

1.2 Statement of the Problem

The assumption here is that an organizational

decision to install a DBMS has already been made, and

that the installation has been all, or nearly all, com-

pleted. In that context, consider tjhe case of a small

user group within a large organization that has an in-

house DBMS. Assume the user group has need of a data

base reorganization for its own activities, and would

like to take advantage of the organization's DBMS, or at

least to consider the possibility of a DBMS application.

The purpose of this thesis is to present a mechanism by

which a consultant can aid the unsophisticated user (in

terms of DBMS knowledge) in considering and implementing

a DBMS application when it is called for. The idea is

that the user should be on top of and participate in the

entire development effort from inception to implementation,

and be very comfortable with the end result. In the fore-

going context, the problem to be considered is restricted

to that mentioned above. The more fundamental problem

of how an organization should structure its data processing

8

resources is beyond the scope of this thesis, and has,

in any case, been treated fairly extensively in the

literature (see references cited in 1.1).

1.3 Method of Solution

While it is likely that there is no fixed "all

purpose" solution to the problem stated in 1.2, it is

also likely that there are some underlying principles

involved which would be valid for the vast majority of

cases of the type considered here. Therefore the approach

taken in this thesis is to present a case study in some

detail. Hopefully, the case study will be "typical"

enough of such cases to bring out those underlying prin-

ciples.

To fulfill the purpose of this thesis the reorga-

nization of the membership data base of the "Planning and

Design of Tall Buildings" research project will be used

as a case study. As will be seen in Chapter II, it is

a relatively simple case, but that means that the peculi-

arities of the case study itself are less likely to

obscure the general guidelines involved. It is realized

that one case study cannot possibly provide a general

guideline that will work in every case. Also, as will be

shown later, there are some areas which were not of great

concern in this case study, but which can be in other

cases. This thesis is intended to be one step in the

overall path toward a general solution.

1.4 Objectives

The objective of this thesis is to provide a

guideline which can be used by a small user in the

environment mentioned in section 1.2.

10

CHAPTER 2

The Case Study

2.1 Case Study Environment

The case study took place at Lehigh University.

The computer center at Lehigh operates in an "open shop"

environment, rather than the more typical "closed shop"

environment found in most organizations. The main

difference in this particular case is that the consul-

tant (in this case the author) is external to the

computer center, rather than internal to it. The hard-

ware is the Digital Equipment Corporation's DEC-20

system. The DBMS software package is DEC'S in-house

DBMS. This package is appropriate for a case study since

it is modeled on, and is very close to, the CODASYL DBTG

system.

"Planning and Design of Tall Buildings" is one of

several projects under way at the Fritz Engineering Labo-

ratory at Lehigh University. The Fritz Engineering Labo-

ratory is in turn connected with the Civil Engineering

Department at Lehigh. The Tall Buildings Project is a

large international interdisciplinary research project,

centered at Lehigh, and under the direction of

11

Dr. Lynn S. Beedle. Dr. Beedle, a professor of Civil

Engineering at Lehigh, is the director of Fritz Engineer-

ing Laboratory. Dr. George C. Driscoll, also a professor

of Civil Engineering at Lehigh, is an associate director

of Fritz Engineering Laboratory. Among other things,

Dr. Driscoll is responsible for heading the computer

systems and operations phase of the Tall Buildings Pro-

ject .

The Council on Tall Buildings and Urban Habitat

was established to study all aspects of the planning,

design, construction, and operation of tall buildings.

One of its major tasks is to come out with a comprehen-

sive MONOGRAPH on the subject. (For a more detailed over-

view of the Tall Buildings project and its various phases

and operations, see Beedle [1] and [2], and Brinker [3].)

Thousands of people all over the world are connected

with the project in scores of different activities.

Needless to say, coordinating their efforts is a major

undertaking, and would be extremely difficult without a

good computerized membership data base.

Basically, the membership data base is supposed

to aid in keeping track of who is doing what, where, and

when. In addition, the data base is supposed to provide

input for a series of application programs which provide

lists of certain project members, in some cases with

12

addresses, by project activity and/or by organization

and/or by geographic location. One of the programs

prints address labels for mailing material to selected

collections of project members.

With the installation of the DEC-20 system, along

with its DBMS software package, at Lehigh in the fall of

1977, Dr. Driscoll saw a way of restructuring the member-

ship data base to avoid then current problems with

updating, inconsistent data, redundancy, and in general

the usual problems an organization has which makes it

turn to a DBMS system. (A brief description of the old

system is contained in 2.2. For a fuller description,

see Brinker [3], appendix F.) Therefore, after consul-

tation with Dr. Ben L. Wechsler of the Industrial Engi-

neering Department at Lehigh, Dr. Driscoll and Dr. Beedle

offered the author the position of research assistant to

work with Dr. Driscoll in the design and implementation

of the DBMS application which makes up this case study.

2.2 The Old System

When an individual member of the Tall Buildings

Project is engaged in a specific activity, the name of

the member is placed on the list of those involved with

that particular activity. The major lists, for data

base purposes, are referred to as rosters. Many of the

13

rosters are subdivided into sublists, referred to as

committees. A few of the rosters are divided into sub-

collections, referred to as groups, and the groups are

further subdivided into committees. To distinguish be-

tween the two types of committees, when that is necessary,

they will be referred to as roster committees and group

committees. This is a vast oversimplification of the

organizational structure of the Tall Buildings Project,

but for data base purposes it will suffice.

The old data base was kept on tape as a large

sequential file. All processing and applications were

performed using Lehigh's Control Data Corporation model

6400 computer system. The exact details of the file

organization and how the application programs were run

are in f3]. A brief description will be included here

for convenience. Each physical record in the tape file

was an 80 character card image record. Basically the

file can be thought of as being in four parts, separated

by specific records used as delimiters.

The first part was a list of all the rosters,

groups, and committees. If a roster was broken up into

groups, the roster's record was followed by the record of

one of the groups in the roster, which was followed by

the records of all the group committees within that

group. This pattern was repeated until all the groups

14

within the roster had been listed. If a roster was

broken up into roster committees, the roster's record was

followed by all the committee records of the committees

within the roster. For example, suppose there were five

rosters. Suppose rosters 1 and 4 had neither groups nor

committees, rosters 2 and 5 had 2 and 4 committees respec-

tively, and roster 3 had 3 groups with 1, 2, and 3 com-

mittees respectively. Then a logical picture of the

organization of the first part of the file would be as

shown in figure 2-1.

The second part of the file contained the actual

membership data. Four of the 80 character records were

used for each member. The first record contained the

first line of the member's mailing address (which would

be the title and name in most cases), followed by the

member's last name, title, and initials (if the member

was a person, as opposed to an organization, in which

case just the name of the organization would be included).

The second record contained the second line of the mail-

ing address, followed by the member's organization. The

third line contained the third line of the mailing address,

followed by a code giving the rosters, groups, and/or

committees the member was currently on. The fourth record

15

roster 1 data

roster 2 data

committee 2-1 data

committee 2-2 data

roster 3 data

group 3-1 data

committee 3-1-1 data

group 3-2 data

committee 3-2-1 data

committee 3-2-2 data

group 3-3 data

committee 3-3-1 data

committee 3-3-2 data

committee 3-3-3 data

roster 4 data

roster 5 data

committee 5-1 data

committee 5-2 data

committee 5-3 data

committee 5-4 data

figure 2-1

16

contained the fourth line of the mailing address,

followed by the member's city and state or country.

The third part of the file repeated the listing

of the rosters, groups, and committees in the same order

as in the first part. In this case each such entity was

followed by a list of the members connected with the

entity. Every time a member was connected with a par-

ticular entity, the first record of the member's four

record data description (described in the previous

paragraph) would be duplicated after the record of the

entity.

The fourth part of the file contained a list of

all the countries that members of the project lived in.

Each record contained the name of a country, and its

abbreviation.

Each member of the project was on at least one

roster, group, or committee, and some were on close to

twenty. A change to any single record in the tape file

required a separate user input. Thus if a member's

name were changed, several different records had to be

separately updated to reflect a change in one item. If

an organization had twenty project members working for

it, the name of that organization was repeated at least

twenty times. If the organization changed its name,

all those records had to be separately updated. The

17

same repetition held with cities, states, and countries.

As is the case with tape files, the only way to

update the file was to recopy the entire file, changing

those items that required change along the way. Updat-

ing the file was both difficult and prone to errors

that were difficult to correct. As data for file updates

accumulated, it was punched on cards and saved. About

every three months the entire file was updated using a

system software utility program called UPDATE.

The application programs were generally used to

create lists of selected member names, sometimes with

addresses, and/or to print mailing address labels for

selected subsets of the membership. The selected sub-

sets were usually the members associated with particu-

lar rosters, groups, and/or committees, not necessarily

the same ones every time. The lists were to be sorted

alphabetically by name and/or by country, city, and

name and/or by organization and name. (States in the

United States were treated as countries for this pur-

pose.) If a city, state, country, or organization was

entered incorrectly during an update run, the desired

lists in subsequent application runs would be messed up.

When an application program was to be run, UPDATE was

used, along with the accumulated corrections (which were

not actually entered into the data base unless the run

18

coincided with a quarterly file re-creation), to create

a temporary disc file consisting of a copy of the rele-

vant records of the data base. After the application

was run, the temporary file was discarded.

There were no provisions for querying the data

base if information was required about a few individual

members. There were also no provisions for keeping such

occasionally needed data as telephone numbers and length

of time with the project. In general, the old data base

was cumbersome to use at best, did not take advantage of

advanced computer technology, and as inconsistencies

developed, was in danger of becoming a liability.

2.3 Case Study Objectives

Most of the problems with the old system had to

do with faulty and delayed updating. Also the file

organization made new application development difficult,

if not impossible. The primary objective in this case

was to have a file organization that makes updating fast

and easy, and that does away with internal inconsisten-

cies and redundancies. If possible, the users wanted

to have on-line updating facilities. As a spin-off of

the on-line updating facilities, it became possible to

add the additional objective of on-line querying, at

almost no charge. This was possible because querying

19

would impose no additional data structure constraints,

and could be accomplished with a relatively simple

application program, as will be seen in 2.7. Another

important objective was to allow the same "batch type"

applications as were run under the old system. In fact,

if possible, the users wanted to use versions of the

same application programs. This latter point was be-

cause it will be the users' responsibility to maintain

the system, and maintenance would be easier if the users

were familiar with the application programs. This will be

discussed more fully in 2.7.

On a more long range basis, an objective was to

provide a data base design which could be easily expanded

to include other projects in Fritz Lab. Another objective

along the same lines was to have a design which could be

emulated for other uses, e.g. an administrative data base

at Fritz Lab.

2.4 DBMS Application Decision

It should be clear from the objectives of the case

study that the file organization of the data base should

be one that allows random access. A given member of the

project is on a membership list, a geographical list, an

organizational list, and at least one and perhaps as many

as twenty roster, committee, and/or group lists. These

20

factors plus the desired on-line features made the choice

of a DBMS application a natural one. Most DBMS software

is designed to be compatible with on-line applications.

Such software was available. The software would take

care of the mechanics of setting up the necessary chains

to correspond to all the desired lists. The random

access feature of the DBMS was better than any of the

available alternatives on the current Lehigh hardware

configurations. Finally, a DBMS design makes file main-

tenance easier from the users' point of view. Frequent

file reorganizations are not nearly as likely to occur

as with indexed sequential or straight random access

methods. This last consideration is especially important

in cases where the users are not primarily data process-

ing oriented, but are still responsible for file organi-

zation and maintenance.

There were some drawbacks to the decision to go

DBMS. First there is the obvious one that the data had

to be converted from use on the CDC 6400 to use by the

DEC-20. The two systems are almost totally incompatible.

This caused more problems than was originally apparent.

The CDC used only seven-track tape, so the original data

was naturally stored on that medium. The DEC had only

one tape drive, and it took nine-track tape. While the

computer center claimed they were ready, willing, and able

21

to help users convert, their cooperation in this particu-

lar endeavor was difficult to obtain and its lack

unnecessarily delayed completion of the system conversion.

Another drawback to going DBMS was that the appli-

cations were largely batch processing oriented, and

required use of a high speed line printer. The DEC-20

configuration had only one 240 line-per-miHute printer.

Eventually some compromises were called for. The project

leaders agreed to use the printer for only the first copy

of lists and mailing labels, and use copying facilities

for others.

A final problem was that the DBMS software was

new and still largely experimental. As a consequence,

it was not completely debugged. This led to some problems

which were overcome by some minor design changes and a

different approach toward the application programs.

2.5 Getting Started

Throughout the course of the case study, the users,

represented for the most part by Dr. Driscoll, and the

consultant worked closely and harmoniously together. This

cannot be overemphasized. While in general user involve-

ment is extremely important in the development of an infor-

mation system, in this type of situation it is even more

crucial (if that is possible). Not only will the users

22

have to use the system, they will have primary responsi-

bility for maintaining it. Also, in this case, the batch

application programs are primarily the users'. There-

fore, Dr. Driscoll was actively involved in the technical

end of the development.

After the initial procedures of engaging the

consultant, defining the general scope of the problem,

and deciding to go DBMS were completed, Dr. Driscoll and

the consultant jointly came up with two documents for

guidance. The first was a general schedule (see figure

2-2). No timetables were set, as the duration of each

activity was not easily determined in advance. Estimates

would have been useless, as neither Dr. Driscoll nor the

consultant were able to devote full time, or even a

steady percentage of time, to the case. The purposes of

the general schedule were to inform everyone involved in

the development effort of the general progress made, and

to avoid going off on tangents.

The second document was a written description of

the data base functions (see figure 2-3). The purpose

for this was to have the specific goals in mind and

clearly spelled out while doing the work. Both the

users and the consultant were aware that this was a

working paper only, subject to change if situations

warranted (which they did). Both documents were the

23

General Plan for Tall Building Project Data Base

I. Get functions of data base defined by user

II. Design data base

III. Review design with user, make changes as necessary

IV. Get data base schema up on machine

V. Load test data

VI. Review application needs with user

VII. Write and test application programs

VIII. Write documentation for application programs

IX. Write user manuals, review use with user

X. Load real data

XI. Retest application programs

XII. If time permits, add additional features as

requested

figure 2-2

24

Data Base Functions

I. For each member, the data base will contain his

last name, first name (or initial), middle name

(or initial), mailing address, telephone number,

starting and ending date with the project, geo-

graphical data, organizational data, and roster,

group, and/or committee affiliations, together

with special responsibility where applicable.

II. The major use will be to print names and/or

addresses and/or address labels in any of the

following orders:

A. Alphabetically

B. Chronologically

C. By country and city, alphabetically

D. By roster alphabetically. In this case

if a name is on several rosters, the user

will have a choice as to whether or not

more than one address label will be printed

E. By organization, alphabetically

F. By roster by starting date in the project

III. Updates to the data base can be made on-line as

they occur. Queries of the data base can be made

on-line.

figure 2-3

25

final result of several meetings of give and take.

2.6 The Data Base Design

The logical data base design, or schema, is shown

in figure 2-4. The actual data description is in appen-

dix A. It is written in the DEC Data Description Lan-

guage (DDL) (see [7]). The data base dictionary defining

the terms used in the design is in appendix B. The size

of the data base was worked out by the consultant after

consultation with Dr. Driscoll about the number of

records of each type. Space was left for growth within

each data base area, and pages were left for expansion of

each data base area if necessary.

Naturally the design shown in figure 2-4 was not

the original one. Some of the changes that were made,

along with the reasons for those changes are as follows:

a. Neither groups nor group committees were con-

sidered in the original design. They were overlooked

when the organizational structure of the project was first

described to the consultant. When they, along with their

member lists, were added, several new record types and

sets had to be added, but the basic design structure

remained intact.

b. At first member names were not included in

record types NAME-ROSTER-REC, NAME-R-COMM-REC, NAME-GROUP-

26

U
t ,v
** ■*■

T J

i «>

» r<

|i
«* !*
Y ^

i ~-

Ui t^

k
1 a*

t 1
t t *. o t £
vj « tu

1 Y <» o:
1
t
?: uj
o Q.
« >-

> u.
K

y .'
?
5:
t , o 1 V

T «r

1
"f > *: u
t

/ UJ

27

REC, and NAME-G-COMM-REC. It was originally felt that

owner pointers to NAME-FILE would be enough, but later

the names were added to ease and speed up processing.

This is an example of processing speed versus redundancy

trade-off, leading to a case of controlled redundancy.

Although member names are duplicated, sometimes many

times, the application update program is written so that

a change in name need only be entered once. Then the

name change will be made on the member's personal data

record and all appropriate roster, group and committee

lists in a manner that is transparent to the user.

c. The NAME-FILE record type was originally

ordered two ways—alphabetically and chronologically.

Also the ORGANIZATION-REC and STATE-COUNTRY-REC record

types were ordered alphabetically. All these orderings,

except the alphabetical ordering of NAME-FILE, were

eliminated. The main reason was that on test data the

system software had a great deal of trouble with system

sets. (Often the software would insert a record into the

data base correctly, and then would crash while trying to

make the appropriate system set linkages. Some of the

linkages would get made, but not all. The selection of

which linkages would be fouled up, if any were, seemed to

be random. The problem went away when the data base

design did away with most of the system sets.) Also, a

28

change in how the batch application programs would be

run, which will be described later, made all but the

alphabetical ordering of NAME-FILE largely unnecessary.

The software problem was described to the compu-

ter center, but no explanation was ever received. Two

communications from the center were received. The first

said that the problem was being looked into, and may

have to be sent to DEC. The second said that the data

base (one of the test versions) had been destroyed, and

to let them know if the problem reoccurred.

d. Owner pointers were not included in all sets

at first, but they were later added to ease processing.

e. The data item FOURTH-LINE was not originally

considered necessary, as the consultant felt it could be

generated from the city and state or country. Here is an

example of the importance of user participation. Dr.

Driscoll was able to point out that the fourth line on an

address label is restricted in length, and that the actual

fourth line might be in a different form than city and

state or country. Also it would be easier for the user

during an update run to be able to enter the entire ad-

dress, and not worry about which part to enter and which

part not to enter. In this case the major trade-off was

user convenience versus redundancy.

f. The internal reference numbers of the rosters,

29

groups, and committees, i.e. the data items ROS-NUM, G-

NUM, R-COMM-NUM, and G-COMM-NUM, were added after the

original design was made. They were added because the

users wanted to have a simple unique way of identifying

each such entity. Then later on,the output codes, i.e.

the data items ROS-OUTPUT, G-OUTPUT, R-COMM-OUTPUT, and

G-COMM-OUTPUT, were added because they could supply a

mnemonic code on printed outputs to identify the rosters,

groups, and committees.

2.7 Application Programs

There are actually two types of application pro-

grams. There are the users' application programs to han-

dle the users batch programming needs, and the data base

programs to handle communication with the data base. The

first type can be created to use the data base directly

for input, but for reasons which will be discussed in

section 2.7.3, that option was not chosen in this case.

Therefore, the users' batch application programs were not

actually part of the consultant's work, and so will not

be discussed here, except as they relate to the DBMS

application.

There were four major DBMS application programs

written by the consultant—a loading program to load the

initial data into the data base, an update program to

30

allow on-line updates of the data base, a query program

to allow on-line queries of the data base, and an inter-

face program to allow the data base to interface with

the users' batch application programs. All of these

programs were written in COBOL, using the DEC'S Data

Management Language (DML) verbs, which are COBOL compat-

ible (see [8]).

2.7.1 The Loading Program

The flowchart and written documentation of the

loading program are contained in appendix C. Of the four

programs, the loading program was the only one written

for limited use. It is also the only one that requires

no interactive input. Thus no user manual was written

for use with this program. On the other hand, the load-

ing program was the only one that required direct user

participation in the logical design. The users had to

supply the input files for the program. Therefore, the

logical flow of the program depended upon what the users

gave the consultant to work with.

The input files came from the old data file, which

had to be converted from seven track tape to nine track

tape. As mentioned in 2.4, there were some problems in

getting the computer center to get moving on the conver-

sion. Consideration was even given to using the update

31

program to load the data base, though that would have

been excruciatingly slow. Fortunately this was not

necessary as the computer center was able to provide the

necessary data files.

The raw data, however, was not what Dr. Driscoll

wanted the loading program to use. The data was incom-

plete. Dr. Driscoll wanted to edit the data to correct

some obvious mistakes, and to insert such items as the

internal reference numbers and the output codes for the

rosters, groups, and committees. They were crucial for

the successful running of both the batch and the data

base application programs. He also wanted to insert an

indicator to differentiate people members from organiza-

tional members. Other items which were not in the origi-

nal data file, such as the first and middle names of

person members, the phone numbers of the members, and the

starting dates and ending dates of members could be added

piecemeal using the update program.

Using a test data file similar in format to the

real one, Dr. Driscoll created several different types of

new data files with programs that he wrote. Some of the

new files were the final product of a series of programs.

After several hours of discussion, which took place over

a period of a few weeks, Dr. Driscoll and the consultant

agreed that the data for loading the data base would be on

32

two files that were created by Dr. Driscoll from the

original data file.

The first file was a list of the rosters, groups,

and committees in the same order as in part 1 of the

original file (see figure 2-1). In addition to the des-

criptive data, each record in the file contained the

internal reference number and the output code of the par-

ticular roster, group or committee that the record was

for.

The second file was a list of the project member-

ship. For a person member, the record contained the

member's last name and first and middle initials. For an

organizational member, the record contained the entire

name (up to a certain number of characters). In addition,

each record contained a member's four line mailing address,

the member's city and state or country (this was separate

from the mailing address), the member's organization, plus

some other data from the old file not used by the loading

program or the data base. The above data came from the

old file. Also in each record was a character to indicate

whether the member was a person or an organization, and an

item giving the total number of rosters, groups, and com-

mittees that the member was on, together with a list (by

internal reference number) of the appropriate entities

with the member's responsibility on each such entity.

33

These last items were inserted by Dr. Driscoll's pro-

grams .

2.7.2 The Update and Query Programs

The flowchart and written documentation for the

update program are contained in appendix D, and for the

query program in appendix E. User manuals for the two

programs are in appendix G. These two programs had the

least user involvement in their design and functions.

Basically, the users had to indicate satisfaction, or

lack thereof, in the end results. There was little need

for discussion about what the programs had to do, as their

functions were obvious. In both cases the users' primary

responsibility was to indicate whether or not they could

use the programs satisfactorily, and whether there were

any areas requiring improvement.

More time was spent on the update program than any

other single feature of the consultant's work. For sev-

eral weeks nothing else was done, and after that a good

percentage of the consultant's time was spent on testing,

debugging, and improving the program. The program was

fairly long (about 1400 lines of code), highly interactive,

and had several different logical branches that it could

take. Care had to be taken to protect the data base from

involuntary improper input. (There is little hope of

34

protecting the data base from voluntary improper input if

someone with that in mind gets as far as using the update

program. In that case the idea is to prevent such people

from getting access to the program in the first place by

taking proper security precautions.) Since the eventual

users of the program would be largely clerical types,

there was need to make the program as "idiot proof" as

possible. (This is not intended as a slur on people with

clerical jobs. The fact is that Murphy's Law seems to

hold rigidly with all computer systems. [Loosely stated,

Murphy's Law says, "Whatever can go wrong, will."] Any-

one who is not used to working with a computer can quickly

find themselves in trouble through no fault of their own.

The system designer must try to anticipate potential

trouble spots as much as possible.)

During the time that the consultant worked on the

update program, Dr. Driscoll was kept informed of the pro-

gress, sometimes on a daily basis. He was encouraged to

try the various versions of the programs, and to think of

as many possible variations as he could of the possible

user input. In this way the users were kept actively in-

volved in, and could contribute to, a large and integral

part of a system which would eventually be their sole

responsibility.

Some of the specific features of the update program

35

that were put in to aid the eventual users were as

follows:

a. All user input is preceded by a request for

the input, often with an explanation of the type of in-

put expected. Then the prompt =■> is displayed to

indicate that the user should begin entering data.

b. User input is entered one line at a time, and

need not be left justified. In cases where user input

must be of a specific type or value, the user is given

three chances to make a correct entry, with successively

stronger messages displayed after each incorrect entry.

If proper input is not made after three chances, the

program branches to its exit routine and stops executing.

c. When the user enters a member's name for the

purpose of either changing or deleting the member's

record, the computer finds the record, displays the name

and address, and asks the user to verify that the correct

member record has been found. This provides protection

in case either the wrong name is input, or there are

several members with the same name. In the latter case,

the computer will look for another record with the same

member name.

d. There are a limited number of geographic

entities. Should the user enter a geographic location

not listed in the data base (during an addition trans-

action), the computer will request that the location be

36

reentered, thus providing protection against a possible

spelling mistake in the original entry.

e. As each transaction is completed, an entry is

made in a data file which the user can check when all

transactions have been completed for a particular run.

There are actually three separate data files created,

one each for additions, deletions, and modifications.

By contrast to the update program, the query

program was simple to write, debug, and implement. As

the update program was written first, some of the fea-

tures of the update program could be adopted by the

query program, and some of the trouble spots could be

avoided. The main reasons the query program was so much

easier, however, were that it is shorter, logically

simpler, and accesses the data base in retrieval mode

only, so that one does not have to worry about protecting

the data base.

The query program uses no input files and creates

no output files. All I/O is from a terminal. The user

inputs the name of the member whose record is to be

queried. The computer then acts in the same manner as

described in part c above. Then the user is asked speci-

fically about viewing every item in the member's record.

After testing the query program, Dr. Driscoll

requested that in listing the rosters, groups, and

37

committees that a particular member belongs to, the

reference number be included along with the description.

Other than that, he accepted the program as written.

2.7.3 The Interface Program

As mentioned at the beginning of section 2.7, it

would have been possible to write application programs

which used the data base directly as their input, and

which performed the batch processing required by the

users. In fact, the consultant had started work in this

area when the users decided not to go this way. The users

were primarily motivated by ease of maintenance, and sec-

ondarily motivated by speed of the project. The batch

application programs were already written to work with the

old data file on the CDC computer. It would be relatively

easy to adapt them to work on the DEC-20, and to use as

input a file similar in format (but improved in content)

to part of the old data file. It would also be faster and

easier for the consultant to write an interface program to

create such a file, than to write, debug, and test pro-

grams to perform the batch processing directly from the

data base.

One can make a strong case for the method selected

by the users in absolute terms. That is, it is quite

possible that the users' decision was the correct one even

38

if processing efficiency was the sole criterion on which

the decision was based. DBMS applications are designed

to improve overall system efficiency, not specific pro-

grams. Application programs which use a DBMS tend to be

I/O bound, hence slow in processing. In this case the

users' requirements were for various types of sorted

lists, and rarely involved the entire data base. The

lists were generally for the members on selected rosters,

groups, and/or committees. If application programs were

written to use the data base directly as input, the same

records would have to be accessed many times in various

different sequences. To get a complete member record,

several chains have to be traversed. The programs would

have to check to make sure the member was on one of the

selected rosters, groups, or committees. The data base

design would have to be more complicated (see 2.6 part c).

The interface program allows the user to input

the reference numbers of the rosters, groups, and/or com-

mittees to be used for a particular batch run. Then the

program would make a temporary file of only that particu-

lar part of the data base needed. The batch application

programs would then use this file as their input. As

the creation of the temporary file did not require keep-

ing track of as many things as would an application pro-

gram that used the data base directly, the interface

39

program was easier to write and debug. From a users'

point of view, the only requirement (other than having

the necessary information) is to have the output in the

proper format.

The flowchart and written documentation for the

interface program are in appendix F. The user's manual

is in appendix G. The program logic is actually fairly

simple, and there was little trouble with either writing

or debugging. The program gives the user the ability to

have selected rosters, groups, and/or committees used in

making a temporary file. It also allows the user three

other options: (i) by entering ALL , the user will

cause the program to use all rosters (hence all groups

and committees also) in making the temporary file;

(ii) by entering ABC , the user will cause the program

to create a temporary file consisting of an alphabetical

list of all the project members, along with their asso-

ciated data; (iii) by entering ROS , the user will cause

the program to create a temporary file consisting of a

list of the rosters, groups, and committees similar to

that in figure 2-1. This last provision was added later,

at the request of the user, primarily to provide a vehicle

to see how the internal reference numbers are matched with

the appropriate rosters, groups, and committees.

40

2.8 Privacy and Security

Privacy and security did not play a major role

in the development of this system. The information

contained in the data base is neither financial nor

particularly sensitive. Therefore the requirements for

secure and private records are not as stringent as they

would be had this not been the case.

2.8.1 Privacy

The operating system provides some protection

from invasion of privacy by requiring a password to get

at the project's computer directory. This feature is

under the control of the computing center. Unauthorized

programs cannot access the data base unless they contain

the privacy keys of the subschema and the data base areas

These are under the control of the users, who may change

them at will. Access to the authorized application pro-

grams is also under the control of the users.

2.8.2 Security

The consultant recommended that the users main-

tain a backup copy of the data base on tape, physically

removed from the computer center. Therefore in the

advent of physical loss of records, for whatever reason,

the entire data base would not have to be recreated from

41

scratch. The users would have to request the computer

center to make such a backup. The users have the respon-

sibility of seeing to it that the backup copy is updated

periodically.

Once the data base is up, only the update program

actually modifies it. This program can be used only

interactively, and in exclusive update mode (this update

mode was the option selected by the users). Thus if the

system should crash, at most one transaction, the current

one, would be affected. Therefore there was no need to

have the overhead of a transaction log to maintain data

base integrity. Should a system crash occur, no further

transactions would be allowed to take place. The utility

software package DBMEND (see [7], and appendix H) can be

used to restore the system to usable form, and the users

can then take whatever steps are necessary to restore

individual records. If they wish, they can use the utility

software package DBINFO (see [7], and appendix H) to see

precisely what is in the data base, including linkages.

42

CHAPTER 3

DBMS Application Guidelines

3.1 General Considerations

This chapter is aimed both at a consultant and

a user in the environment described in section 1.3. It

is written mainly to the consultant in order to provide

a series of checkpoints in the development process. The

user should also be aware of the checkpoints.

3.1.1 User Participation

The general organization of this chapter is to

present the guidelines by category, where that is pos-

sible. There are, however, several points which cut

across all the categories in the development process.

The first and most important of these is: never work in

a vacuum. Be sure the users are involved in every stage

of the work, and are kept informed of the consultant's

progress and problems on individual aspects of the work.

While it is never a good idea to develop an information

system without the user participating at least as an

observer, in this type of situation it would be

disastrous.

43

In a major systems development effort, with a

large project team working, there is some hope of con-

structing a viable system with only minimal user involve-

ment. A large group of professionals working together

have the opportunity of "bouncing ideas around" until a

good one surfaces. Potential trouble spots, solutions,

user requirements, etc., can be anticipated, not by any

one individual, but as a culmination of group discussions.

The end result may not be precisely what the users wanted,

but there is a reasonable possibility that it will be

something they can live with.

In the situation considered here, there is no

group. There are no team members to point out incorrect

assumptions of user needs and desires, which are bound

to occur. Only the users can say whether a proposed

solution to a particular problem is viable. While there

may be technical specialists the consultant can ask

about specific details (as was the case in this case

study), the users are the only ones with whom the consul-

tant can discuss the problem as a whole. These discus-

sions should be continual, as they will often uncover

small but important details that were overlooked before.

It has been this author's experience that, in general,

the very fact of discussing a problem often seems to make

the solution obvious. Finally, the consultant should not

44

lose contact with the users while involved with a speci-

fic task, e.g., writing a particular program, as a work-

ing relationship once lost may be difficult to regain.

There are positive reasons as well for keeping

the users up to date on both the total picture and the

individual tasks. Users can, and do, come up with

valuable contributions to the development effort. While

the users do not have technical DBMS expertise, they are

the ones most familiar with their needs, and the old

system. They know what worked well before and what did

not.

3.1.2 Plan

Before embarking on the development effort, the

consultant should have a general plan of attack. This

should include a list of what has been completed, what

is being worked on, and what is yet to be done. It should

also include some peripheral items which may or may not be

included, depending on how things go. The plan should not

be construed as a rigid schedule, but as an aid in order-

ing priorities and in making sure important details are

not overlooked. The very act of writing down the plan can

often serve as a reminder of things forgotten. It can

also bring conflicts and inconsistencies into focus.

45

3.1.3 Trade-offs

While working on the project, the consultant

should constantly be on the lookout for possible compro-

mises and trade-offs. The trade-offs should be user

oriented. If it is possible, the users should be the

ones who actually make the choice, after the consultant

has fully gone over the possibilities. The expedient

choice for the consultant will sometimes make the system

more difficult to use for the users. On the other hand,

very few things work out exactly as planned. The con-

sultant should be flexible enough in his (or her) approach

to be able to take the "second best" alternative, possibly

at a later date. The best local solution is sometimes

not the best global solution.

3.1.4 Odds and Ends

The consultant may find it helpful to keep care-

ful notes about what has been done. The users undoubt-

edly have budgets to make and justify, and could easily

require periodic formal reports and projections. The

users, especially if the consultant has worked closely

with them, may help with the reports.

Two final warnings to the consultant: (i) never

be too sure you completely understand what the user wants;

and (ii) be on the lookout for instances of Murphy's Law.

46

3.2 Pre-Design Phase

The pre-design phase of the development effort

will be relatively short, but can set the tone for the

remainder of the work. Misunderstandings at this point

can come back to haunt the consultant later. The pre-

design phase essentially means the initial contact, the

job description, and the delineation of user and consul-

tant responsibilities.

In the initial contact, the users will generally

describe their particular needs. The consultant will

give a general description about the capabilities of a

DBMS. The consultant's description should be specific

as to the types of activities a DBMS application is best

suited for, but should avoid jargon and should not be too

technical. It might be desirable to prepare a simple

example to illustrate key points. The consultant should

not be guilty of overselling (if for no other reason,

than to avoid looking like an ass later). In fact, the

consultant should point out potential alternative designs,

along with their pros and cons. Obviously all of the

above will probably not occur in a single meeting. The

"initial contact" could be spread out over two or three

meetings.

Once the decision to "go DBMS" has been made, the

consultant must ascertain the users' willingness to work

47

with him (or her). If that is not forthcoming, the con-

sultant should suddenly recall pressing concerns which

make it impossible to undertake (a very apt word) a vast

project with only half-vast methods of attack. Assuming

that the users are willing to work with the consultant,

the direct line of authority should be spelled out. It

should be established from the first which individual(s)

the consultant will be working directly with.

In conjunction with the principal user liason

(hereafter referred to as the user), the job description

and measures of effectiveness should be spelled out in

some detail, preferably in writing. The functional

specifications of the proposed system should be worked

out, and prioritized in case it turns out that not all

can be implemented. Possible future developments should

also be discussed and prioritized, as they may affect the

design and application programs.

In order to appraise the user of general progress,

the consultant should set a general schedule and order of

activities (not necessarily with expected times for each

activity). Tasks which require the cooperation of out-

siders, e.g., the computer center or special consultants

on certain technical problems, should be identified as

soon as possible. Arrangements for the cooperation

should begin as soon as possible so that unnecessary

delays will not occur later on.

48

In some cases it will actually be the users'

responsibility to arrange for the outside assistance.

The consultant's role in those cases should be a support-

ive one, perhaps with suggestions on how to best obtain

the results. The consultant definitely should not

abrogate any connection with the activity just because he

(or she) is not directly involved. (The author's fail-

ure to make any suggestions on how to best obtain compu-

ter center cooperation on the tape conversion problem of

the case study [see section 2.4} may have delayed imple-

mentation .)

3.3 Design

The design phase marks the beginning of the

technical work on the DBMS application. It is a phase

that never really ends, even after implementation. There-

fore the most important guideline for the consultant is

to keep the design flexible, so that changes can be accom-

modated.

3.3.1 A Workable Design

Producing a workable design will undoubtedly be

an iterative back and forth process between the consultant

and the user. Some of the key factors affecting the

design, in pretty much their order of importance, are the

49

functional specifications of the system, processing

efficiency for the application programs, future appli-

cation developments, and the size of the data base, which

includes the space for records, overhead, and future ex-

pansion. Also, there probably is some overriding funda-

mental problem which caused the users to consider a DBMS

application in the first place. (In the case study, it

was the update problem.) Any design must first and

foremost attack that problem.

Each design iteration should consist of the

consultant presenting a possible design to the user,

indicating what each of the data items are, showing the

linkages between record types, and giving a general idea

of how the functional specifications will be met. The

consultant should point out possible trade-offs and com-

promises. A clear schematic diagram (see [11]) will aid

the user in deciding which data items should be left out

or added, which important factors were somehow overlooked

in earlier discussions, which linkages were unimportant

and should never have been made, and, in general, clear-

ing up earlier misunderstandings.

3.3.2 The Old System

If the DBMS application is replacing an earlier

computer system, the old system can be a valuable guide

50

toward deciding which data items go with which record

types, how linkages should be made, and even such mun-

dane matters as naming of record and set types. By

making the new system bear a superficial resemblance to

the old, even at a slight loss in overall efficiency, the

consultant will aid the users in understanding the system.

This can possibly mean the difference between a workable

going concern, and an elegant disaster.

3.3.3 The Loading Plan

During the design phase, the consultant should

begin firming a plan for loading the data base. This

requires the close cooperation of the user, as the user

should be responsible for providing the data for the

loading. The loading plan and the data to be loaded can

affect both the system design and the logic of the appli-

cation program used for the loading.

Making the user responsible for providing the

loading data is important for several reasons. Among them

are:

(i) The user is the only one qualified to know

what data is valid, and what data is not valid. Having to

provide the loading data will force the user to clearly

think through what should be included, and what should not.

(ii) If the consultant has to assemble the loading

51

data, he (or she) will not be able to work on other tasks

for which no one else is qualified, thus delaying the

entire project.

(iii) Gathering the loading data will aid the

user in understanding the design and usage of the new

system.

(iv) Gathering the data will aid the user in

thinking about needed application programs.

(v) Finally, gathering the data will make the

user aware (if he was not already) of the computer sys-

tem axiom "garbage in, garbage out."

3.4 Application Programs

The application programs include the loading

program, probably to be used only once, and the programs

written to satisfy the functions of the system, which

will probably be used many times. The loading program

is a special case, as it is the only one where the con-

sultant is not completely in control. The logic of the

loading program depends on the data provided by the

users. For testing and debugging the loading program,

the consultant must know the format and general contents

of the loading data. The user can be a big help here in

providing the details necessary, and possibly providing

the test data itself (as was the case in the case study).

52

If the user does provide the test data for the loading

program, the consultant must make sure that all of the

logical branches of the program are tested.

It is probably better not to use the real data

as test data because the sheer volume of the real data

precludes complete checking of linkages, data item

values, etc. The test data should be small enough to

test and check details, and large enough to cover most

situations. As there will be some kind of an update

program, the test data for the loading program does not

have to cover all situations for all the application

programs. An update program can load other remaining

test data.

The importance of proper test data and procedures

cannot be overemphasized. The consultant will go away

and leave the users "holding the bag" after system

implementation. Even if the system works perfectly,

there will be problems if the user manuals are not very

good. Thorough testing with good test data is very help-

ful in writing good user manuals. More will be said

about the manuals in the next section.

The application programs themselves, especially

the interactive ones, should be as complete and "idiot

proof" as possible. User input should be simple and

described fully. The machine should do as much of the

53

work as possible. There is a good chance that the people

the programs will be interacting with will not be techni-

cally oriented. They will not be readily able to follow

involved logical sequences. The programs should antici-

pate user input as much as possible, and guide that input

with appropriately displayed messages. It is probably a

good idea to sacrifice I/O efficiency, and have the

terminal users input only one line at a time. The user

liason should test the interactive programs himself (or

herself). If that works out, it would be desirable to

get others to try them also, if possible some of the

people who will be using them after implementation.

After the user has checked out the application

programs, it is probable that he (or she) will have

suggestions to make. At this point the consultant will

have to be very careful. The user probably would be

referring to one application program. If the sugges-

tions merit inclusion into the system, and involve changes

only in the particular program, there will be no real

problem. If the suggestions require changes in the schema,

however, there may be a big problem. Changes in the

schema, especially those that would change linkages and/or

methods of access, can affect all the application programs.

The ramifications of a single change can be far reaching

in terms of the entire system, and could cause substantial

delays in return for a minor gain. This is not to say

54

that the changes should not be made, only that they

should be investigated fully before they are attempted.

Then the alternatives should be presented to the user,

who should make the decision as to whether or not the

changes should be implemented. (The user may claim that

the suggested changes should have been incorporated into

the system in the first place. That may be true, but it

is beside the point. The issue at this time would be

whether it is better to undo work already done, or live

with what exits.)

Batch processing applications using a DBMS data

base require some planning. DBMS application programs

tend to be I/O bound. When properly used, a DBMS appli-

cation should increase overall system efficiency, but

may decrease processing speed on some individual programs.

One possible solution is the one taken in this case study:

to create a temporary file, and then use that as the

input for the batch runs. Another possibility is simply

to schedule batch runs for times when the computer is not

busy. The decision may be just to live with the situation,

and not do anything special. The important point is to

recognize the problem, to make sure the user recognizes it

also, and to make an active decision rather than to just

fall into one by default.

55

3.5 Documentation and Manuals

3.5.1 Documentation

The most important thing that can be said about

documentation is: DO IT! Check with the user to see if

there are any documentation standards to be met. If there

are, fine. If not the consultant will have to decide on

his (or her) own standards. In addition to the usual

source listings, the documentation should include at least

a schema diagram, a data dictionary, flow charts of the

application programs, and a written narrative explaining

the logical branches in each program.

Documentation samples should be shown to the user

to see if he (or she) can follow the logic. As the user

will be responsible for maintaining the system after

implementation, the more complete the documentation, the

better. In the case study, in order to make cross refer-

encing easier, the author alphabetized the various proce-

dures in the narrative, and indicated by line number

where they could be found on the source listing.

3.5.2 General Information Manual

As mentioned several times earlier, the users are

not familiar with DBMS's. They will have to gain some

expertise in the area in order to maintain the system.

56

One way the consultant can help is to provide a general

information manual. The purpose of this manual is to

aid the users in using the DBMS and its facilities by

aiding them in reading the vendor manuals. (For some

reason vendors seem to pride themselves on providing

difficult to read manuals.) The application programs

will probably be written in a host language (COBOL,

FORTRAN, PL/1, etc.) using special data base commands.

The general information manual should explain the logic

involved in using the most common of the commands, e.g.,

common sequences in which they are used. The manual

should also explain how to use the recovery techniques

and the information gathering techniques of the DBMS.

There will inevitably be system crashes. There will also

be times when the user wants to check on such details as

data item values, linkages, available space, and other

items of interest about the data base. (If the overall

computer system allows it, it might be a good idea for

the consultant to leave the test data base as a separate

entity from the real one. That way the users will have

something to practice on which resembles the real thing,

and which will cause no real harm if a partially debugged

program mangles the data base.)

57

3.5.3 Application Program Manuals

Good user manuals for the application programs,

especially the interactive programs, are critical to the

proper running of the system. A perfect system is of no

value if it cannot be used.

A user manual for an application program should

explain the general purpose of the program, the different

types of output possible, and how, when, and in what form

user input should be. If the program is interactive, the

manual should explain each terminal message from the

machine (in some detail). A terminal message which says:

ENTER THE ROSTER TYPE

may have been crystal clear in meaning to both the

consultant and the user liason when the manual was written,

but could easily be gibberish to the terminal user.

The manuals should make clear what user input is

valid in each case. To a certain extent, the consequences

of each valid input should be explained. To a larger

extent, the consequences of invalid input should be

spelled out. The manuals should explain what the user can

do in order to recover from invalid input, and what to do

if the system gets tempermental and refuses to take valid

input (as sometimes happens in the best of systems).

58

3.6 Implementation

At this point the design has been finalized, the

application programs have been written, tested, and

debugged, documentation and manuals have been completed,

and the system is all set to go, right? If you buy

that, perhaps you would also be interested in these gold

mine stocks.... In the development effort to this point,

there have undoubtedly been a number of minor changes

whose cumulative effect might have thrown off some of

the initial calculations. One of the first tasks is to

recheck the size of the data base, by area if the DBMS

breaks up the data base into areas. Make sure the

input formats of the loading data agrees with the format

specified in the loading program.

After the loading program has been run, check the

contents of the data base for proper data item values,

linkages, amount of free space, etc. Then check the

application programs. Programs which work well on a

small data base might not do so on a large one.

Finally, before the system is turned over, the

consultant should go over the components of the system

with the users. Final user questions should be answered.

And lastly, the consultant should make sure the users

have understood all the documentation and manuals, includ-

ing the vendor manuals.

59

3-7 Items for Further Study

The knowledgeable reader will have noticed that

there are several key items either not mentioned in the

previous sections of this chapter, or mentioned super-

ficially only. Among these are such things as simultan-

eous updating of the data base, transaction logging,

security procedures, and extensive system testing. These

items, and others, were left up to now because the case

study either did not require them, or did not provide

enough insight from which to generalize. Such items will

be discussed briefly in this section, sometimes with out-

side references mentioned. All the items mentioned in

this section require further study. Also, since one

case study can be misleading, the items in the previous

sections merit further study.

The order of presentation here is (more or less)

the order in which a consultant would have to consider

the items in a development effort.

a. The assumption of this thesis is that the

consultant would be working largely by himself on the

technical details of the development. These guidelines,

or a modified version of them, might be valid for a small

(two or three people) team, which might be preferable

for a system slightly larger than the one envisioned here

b. The case study was particularly well suited

60

for a single data base in a DBMS application (see section

2.4). Other systems might require more extensive inves-

tigation into alternative file designs, multiple data

bases, or a DBMS database used in conjunction with

another file, such as an index file.

c. For the reasons mentioned in section 2.8,

transaction logging of update runs was not included in

the case study. Any system having batch or simultan-

eous on-line updating would have to consider transaction

logging.

d. Should transaction logging be used, then

recovery procedures much more sophisticated than the

ones used in this case study would have to be implemented

e. If the situation is such that simultaneous

updating will be done on-line, i.e., two or more users

will be updating the data base from different terminals

at the same time, then careful programming is called for.

Yourdon in [15] discusses this problem. The DBMS soft-

ware may take care of many of the problems that Yourdon

alludes to, but the situation still requires more care-

ful planning than the case study did, and will alter the

sturcture of the application programs.

f. If updating is done in batch mode, then

backup and recovery, and update program input, will be

different enough from that in the case study to require

61

separate study.

g. If there is extensive batch programming of

any type, efficiency considerations with respect to the

design of the schema and the application programs have

to be taken into account much more than they were in

the case study.

h. If there are organization documentation stan-

dards, the documentation suggested here should be com-

patible, but it might be desirable to look into that

some more. The documentation suggested here might need

some modification.

i. If the data contained in the data base is

particularly sensitive and/or financial in nature, then

extensive security and privacy measures are called for.

These will tend to be hardware and/or software oriented,

and depend on what is available at a given computer

installation. There may, however, be some general guide-

lines. Martin in [13], among others, has written an

entire book on the subject.

j. If the system is complicated and/or is apt

to have multiple users at the same time, system flow-

charts can help to plan the system. Implementation can

take place in carefully planned stages. Finally,

extensive system testing is called for before the system

is turned over to the users.

62

3.8 Summary

In the previous sections, guidelines were

presented in narrative style. That approach was taken

so that the guidelines could be justified as much as

possible, and so that repercussions of particular

actions could be discussed. This section just lists the

key tasks in more or less their proper order.

A. General

i. Involve the user in all stages

ii. Keep an updated general plan,

iii. Watch for compromises and trade-offs,

iv. Always try to ease things for the users

v. Remember: If something can go wrong,

it will; if nothing can go wrong,

something will anyway.

B. Pre-design

i. Get the general idea of the users*

problems.

ii. Describe DBMS capabilities to the users,

iii. Establish which individual will be the

principal user contact, and develop a

close working relationship,

iv. Get functional specifications detailed

and prioritized.

63

C. Design

i. Work out the schema in conjunction

with the user,

ii. Begin firming the loading plan,

iii. Investigate whether transaction

logging is necessary .

D. Application Programs

i. Work out the loading plan and

program with the user,

ii. Plan for test data and program

testing,

iii. Write, test, and debug programs,

iv. Have the user test the interactive

programs,

v. Consider the problem of batch

processing efficiency,

vi. Consider the problem of

simultaneous update,

vii. Consider the backup and recovery

problem.

E. Documentation and Manuals

i. Check documentation standards,

ii. Write data dictionary,

iii. Write flow charts and documentation

narratives.

64

iv. Consider the need for system

flow charts,

v. Write general information manual.

vi. Write application program manuals.

F. Implementation

i. Plan the implementation schedule,

ii. Check the size of the data base,

iii. Check the format of the data for

the loading program*

iv. Load the data base.

v. Check the loaded data base,

vi. Perform necessary system testing,

vii. Review security and privacy features,

viii. Review the system with the users ,

ix. Turn the system over to the users.

65

Bibliography

[1] Beedle, L. S. A Time to Build Up.... A pamphlet
published by the Council on Tall Buildings
and Urban Habitat, Bethlehem, Pennsyl-
vania, August, 1977.

[2] RSVP, An introduction to the Tall
Buildings Project for new staff members,
Bethlehem, Pennsylvania, May, 1975.

[3] Brinker, T. W. "Controlling a Large Inter-
disciplinary International Research
Project" Master's Thesis, Lehigh
University, 1976.

[4] Burch, J. G. and Strater, F. R. Information
Systems: Theory and Practice, Hamilton
Publishing Company, Santa Barbara,
California, 1974.

[5] Cincom Systems, Inc., TOTAL/7 Reference Manual,
Cincinnati, Ohio, 1976.

[6] Datapro Research Corporation, A Buyer's Guide to
Data Base Management Systems, Delran,
New Jersey, 1975.

[7] DECSYSTEM, DATA BASE MANAGEMENT SYSTEM Adminis-
trators" Procedures Manual, Digital
Equipment Corporation, Maynard,
Massachusetts, 1977.

[8] , DATA BASE MANAGEMENT SYSTEM Program-
mer's Procedures Manual, Digital Equipment
Corporation, Maynard, Massachusetts, 1977.

[9] IBM, IMS/VS Version 1, General Information
"Manual, seventh edition, White Plains,
New York, 1977.

66

[10] Kroenke, P. Database Processing. Fundamentals,
Modeling, Applications, Science Research
Associates, Chicago, Palo Alto, Toronto,
Henley-on-Thames, Sydney, Paris, Stuttgart,
1977.

[ll] Martin, J. Computer Data-Base Organization,
Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1977.

[12] . Principles of Data-Base Management,
Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1976.

[13] . Security, Accuracy, and Privacy in
Computer Systems, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1973.

[14] National Bureau of Standards Handbook 113,
CODASYL Data Description Language
Journal of Development, U. S. Department
of Commerce, Washington, D. C, 1974.

[15] Yourdon, E. Design of On-Line Computer Systems,
Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1972.

67

APPENDIX A

SCHEMA DATA DESCRIPTION

68

IMAGES BY COMMAND.

NOTE UNANTICIPATED.

INTERCEPT BIND.

ASSIGN TALL-AREA TO LISTS

RPP 200

BUFFER 4

CALC 2 RPP

FIRST PAGE IS 800

LAST PAGE IS 2200

PAGE SIZE IS 512 WORDS.

ASSIGN NAIM-AREA TO NAIMS

RPP 100

BUFFER 4

CALC 2 RPP

FIRST PAGE IS 100

LAST PAGE IS 600

PAGE SIZE IS 512 WORDS.

SCHEMA NAME IS TALL-B.

AREA NAME IS TALL-AREA

PRIVACY LOCK EXCLUSIVE UPDATE IS FIXEM

PRIVACY LOCK FOR RETRIEVAL IS READEM.

AREA NAME IS NAIM-AREA

PRIVACY LOCK EXCLUSIVE UPDATE IS FIXEM

PRIVACY LOCK FOR RETRIEVAL IS READEM.

69

RECORD NAME IS ROSTER-REC

LOCATION MODE IS CALC USING ROS-NUM

DUPLICATES NOT ALLOWED

WITHIN TALL-AREA.

02 ROS-NUM PIC 999.

02 R-TYPE PIC XX.

02 ROSTER-IDENT PIC X(6).

02 R-DETAIL-1 PIC X(32)

02 R-DETAIL-2 PIC X(30),

02 ROS-OUTPUT PIC X(4).

RECORD NAME IS R-COMMITTEE

LOCATION MODE IS CALC USING R-COMM-NUM

DUPLICATES NOT ALLOWED

WITHIN TALL-AREA.

02 R-COMM-NUM PIC 999.

02 R-COMM-TYPE PIC XX.

02 R-COMM-IDENT PIC X(6).

02 R-COMM-DETAIL-1 PIC X(32)

02 R-COMM-DETAIL-2 PIC X(30)

02 R-COMM-OUTPUT PIC XXXX.

RECORD NAME IS GROUP-REC

LOCATION MODE IS CALC USING G-NUM

DUPLICATES NOT ALLOWED

WITHIN TALL-AREA.

02 G-NUM PIC 999.

70

02 G-TYPE

02 GROUP-IDENT

02 GROUP-DETAIL-1

02 GROUP-DETAIL-2

02 G-OUTPUT

RECORD NAME IS GROUP-COMMITTEE

LOCATION MODE IS CALC USING G-COMM-NUM

DUPLICATES NOT ALLOWED

WITHIN TALL-AREA.

02 G-COMM-NUM

02 G-COMM-TYPE

02 G-COMM-IDENT

02 G-COMM-DETAIL-1

02 G-COMM-DETAIL-2

02 G-COMM-OUTPUT

RECORD NAME IS NAME-GROUP-REC

LOCATION MODE IS VIA GROUP-NAME-SET

WITHIN TALL-AREA.

02 GROUP-RESPONS

02 GROUP-NAME

RECORD NAME IS NAME-G-COMM-REC

LOCATION MODE IS VIA G-COMM-NAME-SET

WITHIN TALL-AREA.

02 G-COMM-RESPONS

02 G-COMM-NAME

PIC XX.

PIC X(6).

PIC X(32)

PIC X(30)

PIC XXXX.

PIC 999.

PIC XX.

PIC X(6).

PIC X(32)

PIC X(30)

PIC XXXX.

PIC X(6).

PIC X(47)

PIC X(6).

PIC X(47)

71

RECORD NAME IS NAME-R-COMM-REC

LOCATION MODE IS VIA R-COMM-NAME-SET

WITHIN TALL-AREA.

02 R-COMM-RESPONS PIC X(6).

02 R-COMM-NAME PIC X(47).

RECORD NAME IS NAME-ROSTER-REC

LOCATION MODE IS VIA ROSTER-NAME-SET

WITHIN TALL-AREA.

02 ROSTER-RESPONS PIC X(6).

02 ROSTER-NAME PIC X(47).

RECORD NAME IS STATE-COUNTRY-REC

LOCATION MODE IS CALC USING STATE-COUNTRY

DUPLICATES NOT ALLOWED

WITHIN TALL-AREA.

02 STATE-COUNTRY SIZE 32 USAGE DISPLAY-6

RECORD NAME IS CITY-REC

LOCATION MODE IS VIA CITY-COUNTRY-SET

WITHIN TALL-AREA.

02 CITY PIC X(32)

RECORD NAME IS ORGANIZATION-REC

LOCATION MODE IS CALC USING ORGANIZATION

DUPLICATES ALLOWED

WITHIN TALL-AREA.

02 ORGANIZATION PIC X(34)

72

RECORD NAME IS NAME-FILE

LOCATION MODE IS CALC USING NAIM

WITHIN NAIM-AREA.

02 NAIM SIZE 47 USAGE DISPLAY-6.

02 TITLE PIC X(17)

02 SECOND-LINE PIC X(32)

02 THIRD-LINE PIC X(32)

02 FOURTH-LINE SIZE 33 USAGE DISPLAY-6.

02 PHONE PIC X(10)

02 START-DATE PIC X(4).

02 END-DATE PIC X(4).

SET NAME IS ROSTER-GROUP-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS ALWAYS NEXT

OWNER IS ROSTER-REC

MEMBER IS GROUP-REC

MANDATORY AUTOMATIC

LINKED TO OWNER

SELECTION CURRENT.

SET NAME IS ROSTER-COMM-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS ALWAYS NEXT

OWNER IS ROSTER-REC

MEMBER IS R-COMMITTEE

MANDATORY AUTOMATIC

73

LINKED TO OWNER

SELECTION CURRENT.

SET NAME IS GROUP-NAME-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS SORTED WITHIN RECORD-NAME

OWNER IS GROUP-REC

MEMBER IS NAME-GROUP-REC

MANDATORY AUTOMATIC

LINKED TO OWNER

ASCENDING KEY IS GROUP-NAME

DUPLICATES ALLOWED

SELECTION CURRENT.

SET NAME IS GROUP-COMM-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS ALWAYS NEXT

OWNER IS GROUP-REC

MEMBER IS GROUP-COMMITTEE

MANDATORY AUTOMATIC

LINKED TO OWNER

SELECTION CURRENT.

SET NAME IS G-COMM-NAME-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS SORTED WITHIN RECORD-NAME

OWNER IS GROUP-COMMITTEE

MEMBER IS NAME-G-COMM-REC

74

MANDATORY AUTOMATIC

LINKED TO OWNER

ASCENDING KEY IS G-COMM-NAME

DUPLICATES ALLOWED

SELECTION CURRENT.

SET NAME IS NAME-G-COMM-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS ALWAYS NEXT

OWNER IS NAME-FILE

MEMBER IS NAME-G-COMM-REC

MANDATORY AUTOMATIC

LINKED TO OWNER

SELECTION CURRENT.

SET NAME IS NAME-GROUP-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS ALWAYS NEXT

OWNER IS NAME-FILE

MEMBER IS NAME-GROUP-REC

MANDATORY AUTOMATIC

LINKED TO OWNER

SELECTION CURRENT.

SET NAME IS R-COMM-NAME-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS SORTED WITHIN RECORD-NAME

OWNER IS R-COMMITTEE

75

MEMBER IS NAME-R-COMM-REC

MANDATORY AUTOMATIC

LINKED TO OWNER

ASCENDING KEY IS R-COMM-NAME

DUPLICATES ALLOWED

SELECTION CURRENT.

SET NAME IS NAME-R-COMM-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS ALWAYS NEXT

OWNER IS NAME-FILE

MEMBER IS NAME-R-COMM-REC

MANDATORY AUTOMATIC

LINKED TO OWNER

SELECTION CURRENT.

SET NAME IS ROSTER-NAME-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS SORTED WITHIN RECORD-NAME

OWNER IS ROSTER-REC

MEMBER IS NAME-ROSTER-REC

MANDATORY AUTOMATIC

LINKED TO OWNER

ASCENDING KEY IS ROSTER-NAME

DUPLICATES ALLOWED

SELECTION CURRENT.

SET NAME IS NAME-ROSTER-SET

76

MODE IS CHAIN LINKED TO PRIOR

ORDER IS ALWAYS NEXT

OWNER IS NAME-FILE

MEMBER IS NAME-ROSTER-REC

MANDATORY AUTOMATIC

LINKED TO OWNER

SELECTION CURRENT.

SET NAME IS CITY-COUNTRY-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS SORTED WITHIN RECORD-NAME

OWNER IS STATE-COUNTRY-REC

MEMBER IS CITY-REC

MANDATORY AUTOMATIC

LINKED TO OWNER

ASCENDING KEY IS CITY

DUPLICATES ALLOWED

SELECTION CURRENT.

SET NAME IS CITY-NAME-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS SORTED WITHIN RECORD-NAME

OWNER IS CITY-REC

MEMBER IS NAME-FILE

OPTIONAL MANUAL

LINKED TO OWNER

ASCENDING KEY IS NAIM

77

DUPLICATES ALLOWED

SELECTION CURRENT.

SET NAME IS ORGAN-NAME-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS SORTED WITHIN RECORD-NAME

OWNER IS ORGANIZATION-REC

MEMBER IS NAME-FILE

OPTIONAL MANUAL

LINKED TO OWNER

ASCENDING KEY IS NAIM

DUPLICATES ALLOWED

SELECTION CURRENT.

SET NAME IS ALPHABETICAL

MODE IS CHAIN LINKED TO PRIOR

ORDER IS SORTED

DUPLICATES ALLOWED

OWNER IS SYSTEM

MEMBER IS NAME-FILE

MANDATORY AUTOMATIC

ASCENDING KEY IS NAIM.

SUB-SCHEMA NAME IS UNIVERSAL

PRIVACY LOCK IS ALLAR.

AREA SECTION.

COPY ALL AREAS.

78

RECORD SECTION.

01 ROSTER-REC.

01 R-COMMITTEE.

01 GROUP-REC.

01 GROUP-COMMITTEE.

01 NAME-GROUP-REC.

01 NAME-G-COMM-REC.

01 NAME-R-COMM-REC.

01 NAME-ROSTER-REC.

01 STATE-COUNTRY-REC.

02 STATE-COUNTRY.

03 COUNTRY

03 STATE

01 CITY-REC.

01 ORGANIZATION-REC.

01 NAME-FILE.

02 NAIM.

03 LAST-NAME

03 FIRST-NAME.

04 F-INITIAL

04 REST-FIRST

03 MIDDLE.

04 M-INITIAL

04 REST-MIDDLE

PIC X(5).

PIC X(27)

PIC X(20)

PIC X.

PIC X(13)

PIC X.

PIC X(12)

79

02 TITLE.

02 SECOND-LINE.

02 THIRD-LINE.

02 FOURTH-LINE.

03 CHAR-28 PIC X(28)

03 ZIP PIC X(5).

COPY OTHERS.

SET SECTION.

COPY ALL SETS

END-SCHEMA

80

APPENDIX B

DATA DICTIONARY

81

DATA DICTIONARY OF TERMS AND DATA NAMES

USED IN THE TALL BUILDING SCHEMA

ALLAR: The privacy lock for the part of the data base

called the UNIVERSAL sub-schema. This lock may

be changed at the option of the user, but has

to be changed in both the schema and the

application programs.

ALPHABETICAL: The system name given the set of member

records, i.e., the collection of NAME-FILE

records. The set is ordered alphabetically by

member name.

AREA: A sub-collection of the entire data base. It

is usually isolated physically in order to

expedite expected processing.

CHAR-28: The first 28 characters of the 33 character

data item FOURTH-LINE. FOURTH-LINE is an item

of the record type NAME-FILE.

CITY: The 32 character alphanumeric data item in a

CITY-REC record containing the name of the city

82

CITY-COUNTRY-SET: The name of the collection of cities

and countries or states. A particular occur-

rence would contain a STATE-COUNTRY-REC record

together with the CITY-REC records of the

cities in the state or country given in the

occurrence of the STATE-COUNTRY-REC record.

CITY-NAME-SET: The name of the collection of cities and

associated memgers of the project. A particular

occurrence would contain a CITY-REC record and

the NAME-FILE records of the members located in

the particular city.

CITY-REC: The name of the record type which has the

records of the cities of the members. Its only

data item is CITY.

COUNTRY: The data item name given the first five charac-

ters of the data item STATE-COUNTRY. Should the

occurrence of the associated STATE-COUNTRY-REC

record be a state in the United States, COUNTRY

has the value ZZUSA . Otherwise its value is

just the first five characters of the country

given in STATE-COUNTRY.

END-DATE: The four character alphanumeric data item in

a NAME-FILE record giving the date that the

member ended his association with the project.

83

The date is in the form YYMM.

EXCLUSIVE UPDATE: The mode used for application programs

which can modify the data base. When used,

no other application program can access the

data base for any purpose.

F-1NITIAL: The first initial of the first name of a

member. It is the first character of the data

item FIRST-NAME, which is part of the data item

NAIM, which is the item in a NAME-FILE record

containing the name of the member.

FIRST-NAME: The 14 character alphanumeric item con-

taining the first name of a member. It is part

of the item NAIM, which is part of the record

type NAME-FILE.

FIXEM: The privacy lock for application programs using

exclusive update mode. This may be changed at

the option of the user, but should be changed

in both the schema description and the appropri-

ate application programs.

FOURTH-LINE: The 33 character alphanumeric data item in

a NAME-FILE record containing the fourth line of

the member's four line address.

G-COMM-DETAIL-1: The 32 character data item in a GROUP-

84

COMMITTEE record giving the first part of the

description of the group committee.

G-COMM-DETAIL-2: The 30 character data item in a GROUP-

COMMITTEE record giving the second part of the

description of the group committee.

G-COMM-IDENT: The data item within a GROUP-COMMITTEE rec-

ord giving the last six characters of the eight

character identifier used under the old system

to identify the group committee.

G-COMM-NAME: The 47 character alphanumeric data item in

a NAME-G-COMM-REC record giving the name of a

member on the associated group committee.

G-COMM-NAME-SET: The name of the collection of group

committees and project members. A particular

occurrence of the set consists of a GROUP-

COMMITTEE record together with the NAME-G-COMM-

REC records of the members on the particular

group committee.

G-COMM-NUM: The three character numeric data item in a

GROUP-COMMITTEE record giving the number used

for internal location purposes of the GROUP-

COMMITTEE record.

C-COMM-OUTPUT: The four character data item within a

GROUP-COMMITTEE record giving a user defined

code used in applications to identify the

particular group committee.

G-COMM-RESPONS: The six character alphanumeric data item

85

in a NAME-G-COMM-REC record identifying the

responsibility of the member in the associated

group committee.

G-COMM-TYPE: The data item within a GROUP-COMMITTEE

record giving the first two characters of the

eight character identifier used under the old

system to identify the group committee.

G-NUM: The 3 digit numeric data item within a GROUP-

REC record giving the number used for internal

location purposes of the GROUP-REC record.

G-OUTPUT: The four character alphanumeric data item

within a GROUP-REC record giving a user defined

code used in applications to identify the partic-

ular group.

G-TYPE: The data item within a GROUP-REC record giving

the first two characters of the eight character

identifier used under the old system to identify

the group. It usually has the value GP.

GROUP-COMM-SET: The name of the collection of groups and

group committees. A particular occurrence of the

set consists of a GROUP-REC record and the GROUP-

COMMITTEE records of the committees of the group.

GROUP-COMMITTEE: The name of the record type of a commit-

tee contained in a roster which is broken up into

86

groups, or in other words the record type of

a group committee. A GROUP-COMMITTEE record has

as data items G-COMM-NUM, G-COMM-TYPE, G-COMM-

IDENT, G-COMM-DETAIL-1, G-COMM-DETAIL-2, and

G-COMM-OUTPUT.

GROUP-DETAIL-1: The 32 character alphanumeric data item

within a GROUP-REC record used to give the first

part of the description of the group.

GROUP-DETAIL-2: The 30 character alphanumeric data item

within a GROUP-REC record used to give the

second part of the description of the group.

GROUP-IDENT: The data item within a GROUP-REC record

giving the last six characters of the eight

character identifier used under the old system

to identify the group.

GROUP-NAME: The 47 character data item within a NAME-

GROUP-REC record giving the name of a member in

the associated group.

GROUP-NAME-SET: The name of the collection of groups and

project members. A particular occurrence of the

set consists of a GROUP-REC record and the NAME-

GROUP-REC records of various members in the

group.

87

GROUP-REC: The name of the record type of a group.

GROUP-REC has as data items G-NU1I, G-TYPE,

GROUP-IDENT, GROUP-DETAIL-1, GROUP-DETAIL-2 ,

and G-OUTPUT.

GROUP-RESPONS: The six character alphanumeric data item

within a NAME-GROUP-REC record giving the respon-

sibility of the member in the associated group.

LAST-NAME: The 20 character item giving the last name of

a project member. LAST-NAME is a sub-field of

the data item NAIM, which is an item of the

record type NAME-FILE.

M-INITIAL: The first initial of the middle name of a

project member. M-INITIAL gives the first

character of the data item MIDDLE. MIDDLE is a

sub-field of the data item NAIM, which is an

item of the record type NAME-FILE.

MIDDLE: The 13 character item giving the middle name of

a project member. MIDDLE is a sub-field of the

data item NAIM, which is an item of the record

type NAME-FILE.

NAIM: The 47 character alphanumeric item in a NAME-FILE

record giving the full name of a project member.

NAIM is sub-divided into the fields LAST-NAME,

FIRST-NAME, and MIDDLE.

88

NAIM-AREA: The area of the data base consisting of all

the NAME-FILE records.

NAME-FILE: The record type of the individual project

members. NAME-FILE has as data items NAIM, TITLE,

SECOND-LINE, THIRD-LINE, FOURTH-LINE, PHONE,

START-DATE, and END-DATE.

NAME-G-COMM-REC: The record type linking a member with a

group committee. It has as fields G-COMM-RESPONS

and G-COMM-NAME.

NAME-G-COMM-SET: The name of the collection of member

records and links to associated group committees.

A particular occurrence of the set consists of a

NAME-FILE record together with a NAME-G-COMM-REC

record for each group committee that the member

is on .

NAME-GROUP-REC: The record type linking a member with a

group. It has fields GROUP-RESPONS and GROUP-NAME,

NAME-GROUP-SET: The name of the collection of member

records and links to associated groups. A partic-

ular occurrence of the set consists of a NAME-FILE

record together with a NAME-GROUP-REC record for

each group the member is specifically associated

with.

NAME-R-COMM-REC: The record type linking a member with a

89

roster committee. It has as fields R-COMM-

RESPONS and R-COMM-NAME.

NAME-R-COMM-SET: The name of the collection of member

records and links to associated roster committees

A particular occurrence of the set consists of a

NAME-FILE record together with a NAME-R-COMM-REC

record for each roster committee that the member

is on .

NAME-ROSTER-REC: The record type linking a member with

a roster. It has as fields ROSTER-RESPONS and

ROSTER-NAME.

NAME-ROSTER-SET: The name of the collection of member

records and links to associated rosters. A

particular occurrence of the set consists of a

NAME-FILE record together with a NAME-ROSTER-

REC record for each roster the member is

specifically associated with.

ORGAN-NAME-SET: The name of the collection of organiza-

tions and associated member records. A particu-

lar occurrence of the set consists of an ORGANI-

ZATION-REC record together with a NAME-FILE

record for each project member in the organiza-

tion.

ORGANIZATION: The 34 character alphanumeric data item in

90

an ORGANIZATION-REC record giving the name of the

organization.

ORGANIZATION-REC: The record type of organization records

for the project members' organizations. Its only

date item is ORGANIZATION. Organizations which

are also project members would have a NAME-FILE

record in addition to an ORGANIZATION-REC record.

PHONE: The 10 character alphanumeric data item in a

NAME-FILE record giving the member's phone

number.

R-COMM-DETAIL-1: The 32 character alphanumeric data item

in an R-COMMITTEE record giving the first part

of the description of the roster committee.

R-COMM-DETAIL-2: The 30 character alphanumeric date item

in an R-COMMITTEE record giving the second part

of the description of the roster committee.

R-COMM-IDENT: The data item within an R-COMMITTEE record

consisting of the last six characters of the

eight character identifier used under the old

system to identify the roster committee.

R-COMM-NAME: The 47 character alphanumeric data item in

a NAME-R-COMM-REC record giving the name of a

member associated with the particular roster

committee.

91

R-COMM-NAME-SET: The name of the collection of roster

committees and associated project members. A

particular occurrence of the set consists of an

R-COMMITTEE record together with the NAME-R-

COMM-REC records of the members on the committee.

R-COMM-NUM: The 3 digit numeric data item in an

R-COMMITTEE record giving the number used for

internal location purposes of the R-COMMITTEE

record.

R-COMM-OUTPUT: The 4 character alphanumeric data item

within an R-COMMITTEE record giving the user

defined code used in identifying the roster

committee in applications.

R-COMM-RESPONS: The six character alphanumeric data item

within a NAME-R-COMM-REC record giving the

responsibility of the member on the particular

roster committee.

R-COMM-TYPE: The data item within an R-COMMITTEE record

giving the first two characters of the eight

character identifier used under the old system

to identify a roster committee. It usually

identifies the type of committee.

R-COMMITTEE: The name of the record type used for the

record of a committee contained in a roster which

92

is not broken up into groups. Its fields are

R-COMM-NUM, R-COMM-TYPE, R-COMM-IDENT, R-COMM-

DETAIL-1, R-COMM-DETAIL-2, and R-COMM-OUTPUT.

R-DETAIL-1: The 32 character alphanumeric data item

within a ROSTER-REC record giving the first part

of the description of the roster.

R-DETAIL-2: The 30 character alphanumeric data item

within a ROSTER-REC record giving the second part

of the description of the roster.

R-TYPE: The data item within a ROSTER-REC record giving

the first two characters of the eight character

identifier used under the old system to identify

the roster. It usually describes the type of

roster.

READEM: The privacy lock for application programs using

retrieval mode. It may be changed at the option

of the user, but should be changed in both the

schema description and the appropriate applica-

tion programs.

REST-FIRST: The last 13 characters of the 14 character data

item FIRST-NAME. FIRST-NAME is part of the data

item NAIM, which is a field of the record type

NAME-FILE.

REST-MIDDLE: The last 12 characters of the 13 character

93

data item MIDDLE. MIDDLE is part of the data

item NAIM, which is a field of the record type

NAME-FILE.

RETRIEVAL: The usage mode for application programs which

access the data base without changing it. While

in use, updates under the mode exclusive update

are not permitted, but other users may use

retrieval mode.

ROS-NUM: The 3 digit numeric data item in a ROSTER-REC

record giving the number used for internal

location purposes of the roster.

ROS-OUTPUT: The 4 character alphanumeric data item

within a ROSTER-REC record giving the user

defined code used in applications to identify

the roster.

ROSTER-COMM-SET: The name of the collection of rosters

and associated committees. A particular occur-

rence of the set consists of a ROSTER-REC record

and R-COMMITTEE records for the committees of

the roster.

ROSTER-GROUP-SET: The name of the collection of rosters

and associated groups. A particular occurrence

of the set consists of a ROSTER-REC record and

GROUP-REC records for the groups contained in

94

the roster.

ROSTER-IDENT: The data item consisting of the last six

characters of the eight character identifier

used under the old system to identify the roster.

ROSTER-NAME: The 47 character alpanumeric data item

within a NAME-ROSTER-REC record giving the name

of a member on the particular roster.

ROSTER-NAME-SET: The name of the collection of roster and

member names. A particular occurrence of the set

consists of a ROSTER-REC record together with the

NAME-ROSTER-REC records of the project members

on the roster.

ROSTER-REC: The record type containing the records of

the rosters. Its fields are ROS-NUM, R-TYPE,

ROSTER-IDENT, R-DETAIL-1, R-DETAIL-2, and

ROS-OUTPUT.

ROSTER-RESPONS: The six character alphanumeric data item

within a NAME-ROSTER-REC record giving the

responsibility of the member on the associated

roster.

SCHEMA: The logical description of the data base, giving

the records, data items, areas, sets, linkages,

and sub-schemas.

SECOND-LINE: The 32 character alphanumeric data item

95

contained in a NAME-FILE record type. It gives

the second line of the member's four line

address.

START-DATE: The four character alphanumeric data item

contained in a NAME-FILE record type. It gives

the starting date of the member with the project

in the form YYMM.

STATE: The last 27 characters of the data item STATE-

COUNTRY. If STATE-COUNTRY-REC gives the record

of a state in the United States, STATE has the

name of the state. Otherwise, it is just a

continuation of the country name.

STATE-COUNTRY: The 32 character alphanumeric data item

in STATE-COUNTRY-REC giving the name of the

state or country. It is broken up into COUNTRY

and STATE. If COUNTRY has the value ZZUSA,

then STATE has the name of a state in the

United States. Otherwise, STATE-COUNTRY has

the name of a country other than the United

States.

STATE-COUNTRY-REC: The name of the record type of states

and countries. Its only data item is STATE-

COUNTRY .

SUB-SCHEMA: That part of the logical data structure set

96

up for a given application program or programs.

Each sub-schema must be described in the schema

description. In this case there is only one

sub-schema defined. It consists of the entire

data base and is named UNIVERSAL. The user has

the option of adding others if desired.

TALL-AREA: The name of the area of the data base

containing all records except NAME-FILE records.

THIRD-LINE: The 32 character alphanumeric data item

within a NAME-FILE record containing the third

line of the member's four line address.

TITLE: The 17 character alphanumeric data item within

a NAME-FILE record containing the title of the

member. If the member is an organizational mem-

ber, TITLE has the value ORGAN

UNIVERSAL: The name of the only sub-schema currently

defined in the schema description.

ZIP: The 5 character alphanumeric data item making up

the last 5 characters of the data item FOURTH-

LINE. FOURTH-LINE IS AN ITEM OF THE RECORD TYPE

NAME-FILE. If the member has a known zip code,

ZIP has the value of that zip code.

97

APPENDIX C

DOCUMENTATION AND FLOWCHART

FOR LOADING PROGRAM

98

DOCUMENTATION FOR LOADING PROGRAM

The loading program LOADDB.CBL is a COBOL

program which loads the data base from two external files.

The first, called ROSTER-COM-GROUP, has the internal

location numbers, identifiers, and descriptions of the

rosters, roster committees, groups, and group committees.

It is assumed that the file is structured so that groups

are located in the roster that they follow, and that

committees are in the roster or group that they follow.

The second file, called NAME-ROSTER-FILE, contains

information about individual members. The information

is whether the member is a person or organization, the

name (last name and initials of a person and name of an

organization), title, address, state or country, city,

organization, and committees, rosters or groups that the

member is on.

The program starts by opening the appropriate

files and areas of the data base. Since the program

changes the data base, its usage mode is exclusive update.

Processing starts by checking the ROSTER-COM-

GROUP file to see if there are any more records to

process. If not, it branches to the processing of NAME-

ROSTER-FILE. ROSTER-COM-GROUP is processed first so that

a member may be placed in the appropriate rosters, groups,

99

and/or committees when NAME-ROSTER-FILE is processed.

The first step in processing a ROSTER-COM-

GROUP record is checking the data item TYPE-GROUP. If

TYPE-GROUP = "QQROS" PUT-IN-ROSTER is performed. If

TYPE-GROUP = "QQCOM" COMMITTEE-CHECK is performed. If

TYPE-GROUP is anything else, an error message is dis-

played and the program reads the next ROSTER-COM-GROUP

record.

PUT-IN-ROSTER stores the roster record. RC-NUM

is used as both the roster's internal location number

and the index for the table LOC-KIND, which keeps the

data base key for the ROSTER-REC record (the data base

key is used for direct access to the record without going

through a calculation procedure) and an indicator to say

that it is the key of a ROSTER-REC record. PUT-IN-

ROSTER also sets GP-FLAG equal to 0, and calls LEFT-

IDENT, which left justifies the roster identification

by checking it character by character.

COMMITTEE-CHECK checks to see if TYPE-ID = "GP".

If yes, the entity is a group. GP-FLAG is given the

value 1, and STORE-GROUP is performed. STORE-GROUP acts

similarly to PUT-IN-ROSTER. If TYPE-ID is not "GP",

GP-FLAG is checked to see if the entity is a group commit-

tee (if GP-FLAG ■ 1) or a roster committee (if GP-FLAG -

0) . Then either STORE-G-COMM or STORE-R-COMM, whichever

is appropriate, is performed. Both are similar to

100

PUT-IN-ROSTER.

The processing of NAME-ADDRESS-FILE starts by

seeing if there are any more records to process. If not,

the program ends. If there is a record to process, the

first step is to see if the record is for an organiza-

tional member or a person member. Then either ORGAN-

MEMBER or PERSON-MEMBER is performed to enter the name

and title into NAME-FILE. Next the program checks to

see if the member is located in the United States. If

so, USA-ROUTINE is performed, otherwise FOREIGN-ROUTINE

is performed. In either case either the correct STATE-

COUNTRY-REC record is found, or a new one is created.

Then the program either finds the correct city (using

the routine CITY-ROUTINE) or, if the city is not among

those listed, creates a new CITY-REC record in the CITY-

COUNTRY-SET set occurrence owned by the current STATE-

COUNTRY-REC record. The next step the program takes is

to either find the correct ORGANIZATION-REC record or

create a new one. Then it moves the appropriate data to

NAME-FILE, stores NAME-FILE, and inserts it into CITY-

NAME-SET set and ORGAN-NAME-SET set.

Finally the program checks NUM-COMM to see if

the member is on any rosters, committees, and/or groups,

and how many the member is on. If NUM-COMM is not zero,

the program performs COMMITTEE-INSERT NUM-COMM times.

101

COMMITTEE-INSERT moves the internal location number to

a temporary holding place, and used the table LOC-KIND

to find the type of entity the member is on, and its

data base key. It then puts the member's name and

responsibility in the appropriate chain.

102

START 3 i rin l <.
LOAOt/IC- J

oren \npvr
F«-GS

o Pen PATA5A5&
A*£AS

in

oRlANllAr/O/i

Merited
Af fifo

>: uh 1
cio't"

I
Orop^Wfj\

yss

r6Kf«>H*L

rtf IJACE.

OR I- n.

0

103

FOttetlrll-

Sranf tie*'
c iry ReccKD

Otftr>Y/i ru

Oftt-AHiiAT/ety ^D

s» SPACES ^>—>~

"7 hi Ht^L ''

To

NO ^ '

 > r • ■

fiOuTlC/t

.' RtctRO Fevy/j
[on no Mtfte

' 2 i ? M tit-

le

^=F
F >H0
OROrtHltA JlOfl

J£J-

Mout UA r* To

i TL tff HA Hi -rfu

I TO rton-icntl

104

frtRT

VA*V
IMP ftcr*
i ro

1
NO

S TAB r
ctry - RO-'TttiC

«P tTAU a
(Co ft T H y

STOf?G

CC-£* IT J

1 r° c-pfiM

T
STofiC-t-Muf

105

. tf1;t*'

TV

\of\TA TONA*t- -

irorie tiknctcuir.
 rt^c

PAf-4 AC HAH(-

MO K-fenfi/rrfc
tciri »A'ASMS Kef

ITCfit: ti*tfS -<D
MA TO HAHe"

tup orcvfi-iiet
vllh PArABAie /ft"

trope runt-otc*>-
rttTc

PflTA lo HAflf-

FIND GKoyP-
iiMfiirTCf

ounAy

106

tTAnr f srttr \
[iter-iotur)

TO
iP/m s Jfcio to

>ie • to

tOt n; u cio-to

"ill NON£ '

ft HP

<?G c

STU*C

-t?£c

c

\f

EHp

OLe tin i n»)
re

HC">-L£TCfi*-nr)

Vf i.

r\t>o i 10

107

1fSjfi£«C -ID TL I
R-{or1M-tOErfr\

HfiW'IO To
C. -tarfM'CVc'fir

(il -Ejrjr ^

S~ TART
(cRCrAtll 1 AT ion

■>VfiirAfi" ft

C' NO

/

tf

v»

H'OOi-E -1ft /": <"»'«»f

E */;

X
"«0* r.

I
UC f -lOtHT
TURV

LI- (FA'T

/

J rote fwre-tic
DH *B»if fct y

(CHD

108

STO«t-i.-<-OrttA k
J

Lftr -LOe«r
rhRo

J/\l/c OAT*0A>t~
no)

£HQ

ST APT

j

I
DATA 10

iAvt DAIASfiiL
Key

I
C trio ")

DATA To

>'

Li-exn

\f

srifie

SAvS. OAfABAir
h£y

E
(Tm>\

trAftr

'tewi/(/o

a^rtf/^V
lTA/':-i'T'l'r '~'

iTA?*
firio iMr/'-co^'/^r-

tfcc

109

APPENDIX D

DOCUMENTATION AND FLOWCHART

FOR UPDATE PROGRAM

110

DOCUMENTATION FOR UPDATE PROGRAM

The program UPDB.CBL is a COBOL program intended

for on-line updating of the data base. It can add a new

record for a member (either a person or an organizational

member), roster, group, or committee. It can modify any

field in the record of an existing member, roster, group,

or committee, with the exception of the field used for

the internal location number of a roster, group, or

committee. It can delete the record of a member, roster,

group, or committee.

The program runs under the exclusive update

mode. As the program runs it creates separate disc files

giving the additions, deletions, and changes that were

made during a particular run. The files are ADDED.DAT,

CHANGE.DAT, and DELETE.DAT.

The opening paragraph of the procedure division

opens the output files and the areas of the data base, and

performs HEADER-ROUTINE (line 97000) which writes the

headings of the output reports.

The beginning of every group of transactions, i.e.,

transactions involving one particular entity, starts with

the paragraph WHICH-UPDATE (line 10500). WHICH-UPDATE

starts by displaying a message explaining the types of

111

updates available to the user, and asks the user to enter

the character which identifies the current choice. An

available option is to enter E to end execution of the

program. The routine QUESTION-ANSWER (line 99880) is

then performed. QUESTION-ANSWER is used whenever the

user is to input a one-character item from the terminal.

The routine moves the item to the data field TYPE-UPDATE,

which is then checked for the value of the item. In

this case TYPE-UPDATE is first checked to see if the

item is a valid one. If not, a message to that effect

is displayed, and control goes to the start of WHICH-

UPDATE. If three successive illegal entries are made,

the program ceases execution.

If the input character is valid, and not E, the

program branches to either ADD-NEW (line 12900), CHANGE-

OLD (line 39100), or DELETE-OLD (line 62500) depending

on whether the update is an addition, modification, or

deletion. In each case the user specifies one of three

possibilities: the update is for a person member; the

update is for an organizational member; or the update is

for a roster, group or committee. Thus there are nine

major independent branches in the program. They are

independent in the sense that the program never branches

from one to another except for the purpose of executing

particular lines of code via PERFORM commands. This

112

documentation will examine the three types of additions,

followed by the three types of modifications, followed

by the three types of deletions. Descriptions of per-

formed routines which are not in one of the nine major

branches are in alphabetical order following the

descriptions of the major branches.

NEW-PERSON (line 14600):

This paragraph starts the code used for add-

ing a new person member to the data base. It accepts

the last name of the person, calls the routine LEFT-

JUST THRU LJ-EXIT to left justify the terminal input

(all alphabetic terminal input is left justified with

this routine) and moves it to LAST-NAME. The paragraph

FIRST-AND-MIDDLE then does the same for the first name

and the middle name. TITLE-CHANGE receives the title

of the person and ADDRESS-ROUTINE the last three lines

of the label address. The address is not checked for

content, but merely moved to the appropriate fields of

NAME-FILE. USA is used to find if the new member is

located in the United States or not. Then NEW-USA THRU

ZIP-ROUTINE (line 69700) or NEW-FOREIGN (line 75800)

whichever is appropriate is performed. These routines

either find or create records for the associated cities

and states or countries. PHONE-ROUTINE and START-DATE-

ROUTINE accept and place in NAME-FILE the phone number

113

and starting date with the project, respectively, of the

new member. NEW-ORG-ROUTINE either finds or creates the

correct ORGANIZATION-REC record for the member. If there

is no organization, the individual is associated with

the record where ORGANIZATION has the value ZZZNONE .

The lines of code referred to above, i.e., the paragraphs

FIRST-AND-MIDDLE, TITLE-CHANGE, ADDRESS-ROUTINE, USA,

PHONE-ROUTINE, START-DATE-ROUTINE, and NEW-ORG-ROUTINE,

have separate paragraph names because the same code is

used in other major branches, and is called by PERFORM

statements.

PLACE-INDIVIDUAL puts the member's record into

the data base. It stores NAME-FILE, connects it to the

appropriate city and organization, and calls CONNECT-

ROSTER THRU CR-EXIT (line 79100) which puts the member

on the appropriate roster, committee, and/or group lists.

Then PLACE-INDIVIDUAL writes the output report and

returns control to WHICH-UPDATE.

NEW-ORG (line 25000):

This paragraph starts the branch of the program

used to create a new organization member, and is very

similar to the branch starting with NEW-PERSON. An

organizational member has its name entered as a whole,

and the value ORGAN is given to TITLE. After accepting

the name, the program moves it to NAIM and ORGANIZATION

114

and checks to see if the organization is already listed

as an occurrence of the record type ORGANIZATION-REC.

If not, a new ORGANIZATION-REC record is created. Then

the program performs ADDRESS-ROUTINE THRU START-DATE-

ROUTINE (see NEW-PERSON), stores NAME-FILE, connects it

to the appropriate CITY-REC and ORGANIZATION-REC records,

peforms CONNECT-ROSTER THRU CR-EXIT (line 79100), writes

the output report, and returns control to WHICH-UPDATE.

NEW-ROSTER (line 26800):

This paragraph starts the branch used to create

a record for a new roster, group, or committee. It

starts by accepting the number used for internal identi-

fication, and performs NUM-RECEIVE THRU NR-EXIT (line

99605) which moves the input to the data item NEW-ROS-

NUM. The program then checks to see if the type of

input is valid, i.e., numeric and three digits or less.

If the input is valid NEW-NUM-CHECK THRU NNC-EXIT (line

39005) is performed to see if the identifying number is

already being used. If so, a message to that effect is

displayed, and control is transferred back to WHICH-

UPDATE. If the number is not in use already, the program

successively accepts the type, identifier, output code,

and description.

If TYPE-UPDATE is R the program stores ROSTER-

REC, performs ROS-COM-ADD-OUTPUT (line 37300), and

115

transfers control to WHICH-UPDATE. If TYPE-UPDATE is

the G the program performs STORE-NEW-GROUP (line 37700),

which either finds the record of the roster that the new

group is in, or returns an indicator saying that it

cannot be found. Then, if there were no problems, GROUP-

REC is stored, ROS-COM-ADD-OUTPUT is performed, and con-

trol is returned to WHICH-UPDATE.

If TYPE-UPDATE is C, execution continues at

ASSOCIATED-ROSTER with the program asking for the number

of the associated roster and then trying to find its

record. If a ROSTER-REC record with the input number

cannot be found, the program looks for a GROUP-REC

record with that number. If one is found, the new

entity is stored as a group committee within that group,

ROS-COM-ADD-OUTPUT is performed, and control is returned

to WHICH-UPDATE. If a GROUP-REC record is not found, an

error message is displayed and control is transferred

back to ASSOCIATED-ROSTER. A maximum of three consecu-

tive incorrect inputs is permitted before the program

ceases execution.

If a valid roster number is input, the program

performs FIND-GROUP (line 78700) to see if the roster is

divided into groups. If not R-COMMITTEE is stored, ROS-

COM-ADD-OUTPUT is performed, and control is transferred

back to WHICH-UPDATE. If the roster is divided into

116

groups, the program asks if the user wishes to have the

committee connected to a group. If not, R-COMMITTEE is

stored as above. If the user does so wish, the program

asks for the correct group number. Three chances are

given for valid input. If valid input is received

GROUP-COMMITTEE is stored, ROS-COM-ADD-OUTPUT is per-

formed, and control is transferred to WHICH-UPDATE.

PEOPLE-CHANGE (line 41000):

This paragraph starts the branch which alters

the record of a person member. It starts by performing

LAST-NAME-ONLY THRU LNO-EXIT (line 68302), which asks if

the user wishes to enter only the last name or the entire

name. The data item NAME-FOUND is returned. If it is 2,

then there is no record to be changed, and the program

goes to WHICH-UPDATE. If NAME-FOUND is one, the record

has been found, and the program branches to paragraph

START-CHANGE (line 43100). If NAME-FOUND is 0, that

means the user wishes to enter the entire name. It starts

off by accepting the last name, first name, and middle

name of the person. The main difference between this
t

start and the start of NEW-PERSON is that the message

displayed at the start here emphasizes the necessity of

entering the name exactly as it is currently recorded.

After accepting the last name, the first and middle names

are accepted by performing FIRST-AND-MIDDLE (see NEW-

117

PERSON). FIND-RIGHT-DUPLICATE (line 99930) is then

performed until either the record of the correct person

is found or there are no more records of people whose

name is the same as that entered. In the latter case

an appropriate message is displayed, and control

reverts to WHICH-UPDATE.

When the desired record is found, the program

saves the data base key of the record, and then asks a

series of questions where the user enters Y to indicate

an affirmative answer, and anything else to indicate

a negative answer. Before each question is asked an

appropriate message is displayed, then the question is

asked, and then QUESTION-ANSWER is performed. In order

the questions are:

Change name? If yes, perform NEW-PERSON THRU

FIRST-AND-MIDDLE, then perform NAME-ROS-CHANGE THRU NRC-

EXIT (line 94100), which makes the same name change on

roster, committee, and group lists. Then the correct

NAME-FILE record is found with the data base key to keep

it the current record of the run-unit.

Change title? If yes, perform TITLE-CHANGE

(see NEW-PERSON).

The paragraph ADDRESS-EXPLAN is started.

Change address? If yes, perform ADDRESS-

ROUTINE (see NEW-PERSON).

118

Change phone number? If yes, perform PHONE-

ROUTINE (see NEW-PERSON).

Change starting date? If yes, perform START-

DATE-ROUTINE (see NEW-PERSON).

Enter an end date? If yes, perform END-DATE-

ROUTINE (line 85190).

Then NAME-FILE is modified, and the paragraph

COUNTRY-STATE-CHANGE is started. The user is asked if

the country or state is to be changed. If not, the

program branches to CITY-CHANGE. If yes, the program

finds the current city (if there is one) and removes

the NAME-FILE record from the CITY-NAME-SET set occur-

rence it is in. The program then asks if the new

country is the United States. If yes, NEW-USA (line

68700) is performed, otherwise NEW-FOREIGN (line 75800)

is performed. NAME-FILE is then inserted into CITY-

NAME-SET set and the program branches to ORGAN-CHANGE.

CITY-CHANGE starts by asking if the city is to

be changed. If not, the program branches to ORGAN-

CHANGE. If yes, the program tries to find the record

of the current city. If the record cannot be found,

NO-CITY-CHANGE (line 62005) is performed, and the pro-

gram branches to ORGAN-CHANGE. If there is a record of

the current city, the program finds the current state or

country record, disconnects the member's record from the

119

current city, performs NEW-CITY THRU NC-EXIT (line

74500), and finds the current NAME-FILE record via the

data base key. The member's record is then connected to

the new city's record.

ORGAN-CHANGE asks if the member's organization

is to be changed. If not, the program branches to ROSTER-

CHANGE. Otherwise the program removes the member's name

from the current organization's list (if there is a

current organization), and connects the name to the new

organization by performing NEW-ORG-ROUTINE (see NEW-

PERSON).

ROSTER-CHANGE starts by asking if the committee

or roster affiliations are to be changed. If not, the

output report is written, and control transfers to

WHICH-UPDATE. If yes, then a message is displayed which

says that deletions, additions, and changes in respon-

sibility will be handled in that order. Then paragraph

DELETE-ROS starts.

DELETE-ROS asks for a number of a roster or

committee (or group) where the member's name is to be

deleted from the list. ACCEPT-ROS-NUM THRU ARN-EXIT

(line 86300), which accepts the input number and identi-

fies the associated entity, is performed. If spaces

were entered, the program branches to ADD-ROS-CHANGE.

If invalid input is entered,an error message is displayed

120

and DELETE-ROS starts again. A maximum of three con-

secutive invalid inputs are permitted. If a valid

input is entered, the program checks to see whether it

is for a roster, roster committee, group, or group

committee, and performs either DEL-ROS-NAME, DEL-R-CORM-

NAME, DEL-GROUP-NAME, or DEL-G-COMM-NAME (line 91200).

Then it goes back to DELETE-ROS.

ADD-ROS-CHANGE performs BEGIN-ROS THRU CR-EXIT

(see C0NNECT-R0STER THRU CR-EXIT, line 79100) to add

the member's name to the desired rosters, groups, and/or

committees.

CHANGE-RESPONS acts similarly to DELETE-ROS.

It uses ACCEPT-ROS-NUM THRU ARN-EXIT to accept and

check the identifying number. If a valid number is

input, CHANGE-RESPONS accepts the new responsibility

and performs either CHANGE-ROSTER-RESPONS, CHANGE-R-

COMM-RESPONS, CHANGE-GROUP-RESPONS, or CHANGE-G-C0MM-

RESPONS (line 88800). When there are no more inputs

the output report is written, and control reverts to

WHICH-UPDATE.

ORGANIZATION-CHANGE (line 55800):

This routine accepts the name of the organi-

zation, finds the appropriate NAME-FILE record (if

possible), displays the name and the address, and asks

if the displayed organization is the desired one.

121

If not, it looks for others until either the desired one

is found, or there are no more organizations with the

input name. In the latter case a message to that

effect is displayed, and control is transferred back to

WHICH-UPDATE.

When the correct record is found, the program

asks if the user wishes to change the name. If not, the

program branches to NEXT-QUESTION. If yes, the program

looks for the associated ORGANIZATION-REC record, and

if there is none, one is created. The new name is

accepted, moved to NAIM and ORGANIZATION, NAME-ROS-

CHANGE THRU NRC-EXIT (line 94100) is performed, and

ORGANIZATION-REC is modified.

NEXT-QUESTION starts by performing ADDRESS-

EXPLAN (see PEOPLE-CHANGE). Then the program asks if

the country or state is to be changed. If not, the pro-

gram branches to CITY-0-QUESTION. Otherwise it removes

the member's record from the city list it is on, per-

forms either NEW-USA (line 69700) or NEW-FOREIGN

(line 75800), and puts the member's record on the new

city list. ORG-ROS-CHANGE (line 62410), which takes

care of roster and committee changes, is performed,

CHANGE-OUTPUT-REPORT (line 62100), which writes the

output report, is performed, and control is transferred

to WHICH-UPDATE.

122

person member. It starts by performing LAST-NAME-ONLY

THRU LNO-EXIT (line 68302). If the data item NAME-

FOUND is 2, there is no record of the person, and the

program goes back to WHICH-UPDATE. If NAME-FOUND is 1.

the record has been found, and is deleted. If NAME-

FOUND is 0, the program continues by performing NEW-

PERSON THRU FIRST-AND-MIDDLE. FIND-RIGHT-DUPLICATE

THRU FRD-EXIT (line 99930) is performed until either

the correct record is found or there are no more

records of people whose name is the same as that input.

Then either the record is deleted and DELETE-REPORT-

ROUTINE (line 67600) is performed, or a message indi-

cating the record could not be found is displayed.

Then control passes back to WHICH-UPDATE.

ORGANIZATION-OUT (line 64700):

This works exactly as PEOPLE-OUT, except

ORGANIZATION-CHANGE is performed at the start.

ROS-COM-OUT (line 65200):

This branch starts by asking for the identi-

fying number, and then performing ACCEPT-ROS-NUM THRU

ARN-EXIT (line 86300). Then if a valid number is

entered, the appropriate entity is deleted, DELETION-

REPORT-ROUTINE is performed, and control is transferred

to WHICH-UPDATE.

124

CITY-0-QUESTION is used to check for city

changes when the state or country is not changed. Its

logic is very similar to CITY-CHANGE in the PEOPLE-

CHANGE branch of the program. The main difference is

that where CITY-CHANGE branches to ORGAN-CHANGE, CITY-

0-QUESTION performs ORG-ROS-CHANGE, CHANGE-OUTPUT-REPORT,

and branches to WHICH-UPDATE.

CHANGE-CODE (line 84685):

This branch is to change one or more fields in

the record of a roster, group or committee. It starts

by asking for the identifying number, and performs

ACCEPT-ROS-NUM THRU ARN-EXIT (line 86300) to check the

validity of the input, find what type of entity the

number identifies, and make the correct record the

current record of the run-unit. If the input is valid

CHANGE-CODE gets the record and asks in turn if the user

wishes to change the type, identifier, description, and

output code. If at any time the answer is no, it

branches down to the next question, otherwise it moves

the new data item to the appropriate fields of all four

types of entities. At the end it modifies the current

record, writes the output report, and transfers control

to WHICH-UPDATE.

PEOPLE-OUT (line 64100):

This branch is used to delete the record of a

123

ALPHABETICAL LIST OF ROUTINES WHICH ARE NOT CONTAINED

WITHIN ONE OF THE NINE MAJOR LOGICAL BRANCHES

ACCEPT-ROS-NUM THRU ARN-EXIT (line 86300):

This routine accepts an identifying number,

checks its validity, and (if the number was valid) finds

the record of the appropriate entity. It moves an

indicator to the data item R-FLAGG to tell whether the

input was spaces, not valid, or the type of entity if

the input number was valid.

ADDITION-OUTPUT-REPORT (line 78605):

This moves and writes the name and address

lines of a new member on the addition report.

CHANGE-G-COMM-RESPONS (line 90000):

This performs FIND-G-COMM-NAME (line 93800)

until either the appropriate name is found or there are

no more names to check. Then if the name was found,

the responsibility is modified. Otherwise an error

message is displayed.

CHANGE-GROUP-RESPONS (line 90600):

Almost identical to CHANGE-G-COMM-RESPONS.

CHANGE-OUTPUT-REPORT (line 62100):

This moves the name to the output line, writes

the change report from the output line, and then moves

spaces to the output line.

125

CHANGE-R-COMM-RESPONS (line 89400):

Almost identical to CHANGE-G-COMM-RESPONS.

CHANGE-ROSTER-RESPONS (line 88800):

Almost identical to CHANGE-G-COMM-RESPONS.

CONNECT-ROSTER THRU CR-EXIT (line 79100):

This routine is to put a member on lists of

rosters, groups, and/or committees. It starts with a

message to that effect. The actual process starts with

paragraph BEGIN-ROS.

BEGIN-R0S asks for and accepts the identify-

ing number, and then performs NUM-RECEIVE THRU NR-EX1T

(line 99605) to get the number to the data item NEW-

ROS-NUM. If the input is valid an appropriate identi-

fier is moved to R-FLAGG, and the program branches to

ADD-RESPONS. Otherwise an error message is displayed,

and the program goes back to BEGIN-ROS. If the input

is blank, the routine ends.

ADD-RESPONS accepts the responsibility, checks

R-FLAGG for the appropriate type of entity, moves the

data to either ROSTER-RESPONS, R-COMM-RESPONS, GROUP-

RE SP0NS , or G-COMM-RESPONS, depending on R-FLAGG, and

stores either NAME-ROSTER-REC, NAME-R-COMM-REC, NAME-

GR0UP-REC, or NAME-G-COMM-RESPONS. Then it branches

back to BEGIN-ROS.

126

DEL-G-COMM-NAME (line 93400):

This performs FIND-G-COMM-NAME (line 93800)

until either the appropriate name is found, or there

are no more names. If the name is found NAME-G-COMM-REC

is deleted.

DEL-GROUP-NAME (line 93100):

Acts the same as DEL-G-COMM-NAME.

DEL-R-COMM-NAME (line 92400):

Acts the same as DEL-G-COMM-NAME.

DEL-ROS-NAME (line 91200):

Acts the same as DEL-G-COMM-NAME.

DELETION-REPORT-ROUTINE (line 67600):

This moves the report material to PRINT-LINE,

writes the deletion report, and then moves spaces to

PRINT-LINE.

END-DATE-ROUTINE (line 85190):

This routine displays a message explaining how

to enter an end date, asks for and accepts the date,

performs LEFT-JUST THRU LJ-EXIT (line 68400), moves the

data to END-DATE, and replaces spaces by zeros.

FIND-AND-PUT-IN (line 96920):

This tries to find the desired STATE-COUNTRY-

REC record. If it cannot be found, the routine creates

a new STATE-COUNTRY-REC record, and moves 1 to the item

127

NOSTATE as an indicator that it did so.

FIND-CITY (line 74300):

This finds the next city belonging to a

particular state or country, and then gets the record

if the find was successful.

FIND-G-COMM-NAME (line 93800):

This finds the next NAME-G-COMM-REC record of

a particular group committee, and if successful, gets

the record.

FIND-GROUP (line 78700):

This is to find if a particular roster has

groups. If it does, 1 is moved to FOUND-GROUP as an

indicator.

FIND-GROUP-NAME (line 93100):

Acts the same as FIND-G-COMM-NAME.

FIND-R-COMM-NAME (line 92400):

Acts the same as FIND-G-COMM-NAME.

FIND-RIGHT-DUPLICATE THRU FRD-EXIT (line 99930):

If the item TEMP-IND has the value zero, the

routine just finds NAME-FILE record. If there is none

to find, the routine stops. If there is a record, the

routine gets it, displays the name and address, and

asks if the record is the one desired.

If TEMP-IND is not zero, indicating this is a

128

retry, the routine looks for the next record which

duplicates the input name, and acts as described in

the previous paragraph.

FIND-ROSTER-NAME (line 91600):

Acts the same as FIND-G-COMM-NAME.

HEADER-ROUTINE (line 97000):

This routine writes the headings for the three

output reports.

LAST-NAME-ONLY (line 68302):

This routine asks if the user wishes to enter

only the last name of the member whose record is to be

found. If not, the routine ends. If so, NEXT-LAST-

NAME THRU NLN-EXIT (line 68378) is performed to find the

correct record, after the routine has accepted the last

name, and created a dummy record. If the name is

found, 1 is moved to NAME-FOUND, otherwise 2 is moved to

NAME-FOUND. Then the dummy record is deleted.

LEFT-JUST THRU LJ-EXIT (line 68400):

This routine tests the item NEW-NAME character

by character. When it finds the first non-blank charac-

ter, it moves STOP-NUM successive characters, starting

with the first non-blank character, from NEW-NAME to

NEW-LEFT, where they will be left justified.

129

NAME-ROS-CHANGE THRU NRC-EXIT (line 94100):

If the name of a member was changed during a

run using either the branch PEOPLE-CHANGE or the branch

ORGANIZATION-CHANGE, this routine is used to find and

modify all the associated NAME-ROSTER-REC, NAME-G-COMM-

REC, NAME-R-COMM-REC, and NAME-GROUP-REC records.

NEW-CITY THRU NC-EXIT (line 74500):

This routine accepts the name of a city. Then

if NOSTATE has the value 1, indicating it is a city in

a state or country whose record was just created, the

routine creates a new CITY-REC record for the city.

If NOSTATE has any other value, the routine performs

FIND-CITY (line 74300) until the appropriate CITY-REC

record is found, or there is no CITY-REC record for the

input city. In the latter case NO-STATE (line 72100)

is performed.

NEW-FOREIGN (line 75800):

This routine asks for and accepts the name of

a country, and tries to find the associated STATE-

COUNTRY-REC record. If the record is not found NO-STATE

(line 72100) is performed. Then NEW-CITY THRU NC-EXIT

(line 74500) is performed.

NEW-NUM-CHECK THRU NNC-EXIT (line 39005):

This routine is used to check an input identi-

fying number for a new roster, group, or committee to

130

see if the number is already being used. If the number

is being used, BN is moved to R-FLAGG.

NEW-PERSON-ORG (line 77900):

When a record for a new person is added to the

data base, or when the organization of a person with an

existing record is changed, this routine tries to find

the record of the new organization. If the record

cannot be found, a new ORGANIZATION-REC record is created.

NEW-START (line 77200):

This routine moves the starting date to START-

DATE and replaces spaces by zeros.

NEW-USA THRU ZIP-ROUTINE (line 69700):

This routine moves ZZUSA to COUNTRY, asks for

and accepts the name of the state, and moves it to STATE.

Then it tries to find the associated STATE-COUNTRY-REC

record. If the record is not found, NO-STATE (line

72100) is performed. Then NEW-CITY THRU NC-EXIT is per-

formed.

ZIP-ROUTINE asks for and accepts the zip code,

and moves it to ZIP.

NEXT-LAST-NAME THRU NLN-EXIT (line 68378):

This routine starts with a dummy record and

finds the next NAME-FILE record. Then it displays the

name and address of the member. This process is repeated

131

until either the last name of the member does not match

the desired last name (stored in data item TEMP-NAME),

or the user indicates that the correct record has been

found.

NO-CITY-CHANGE (line 62005):

This routine is used when a member's city is

to be changed and there is no current city. The routine

asks if the city is in the United States. If so, NEW-

USA (line 69700) is performed, otherwise NEW-FOREIGN

(line 75800) is performed. Then the member's NAME-FILE

record is linked to the record of the new city.

NO-STATE (line 72100):

This routine is used as a check against a mis-

spelled state, city, or country. It asks for and

accepts the new entity. If the entity is either a state

or country FIND-AND-PUT-IN (line 96920) is performed.

If the entity is a city FIND-CITY (line 74300) is per-

formed until the record of the city is found, or there

are no more records to check. In the latter case a new

CITY-REC record is stored.

NUM-RECEIVE THRU NR-EXIT (line 99605):

This routine is used to move an identifying

number for a roster, group, or committee to the data

item NEW-ROS-NUM. The input must be numeric and three

digits or less. Should either of these conditions be

132

violated, B is moved to the item BAD-INPUT. If the

input is valid, it is right justified in NEW-ROS-NUM.

ORG-ROS-CHANGE (line 62410):

This routine asks if the roster affiliations of

an organizational member are to be changed. If the

answer is yes, DELETE-ROS THRU ADD-ROS-CHANGE (see

PEOPLE-CHANGE) is performed.

QUESTION-ANSWER (line 99880):

This routine is used to move a one-character

input to the data item TYPE-UPDATE.

ROS-COM-ADD-OUTPUT (line 37300):

This routine writes the output report when a

new roster, group, or committee is added to the data

base.

STORE-NEW-GROUP THRU SNG-EXIT (line 37700):

This routine is used when a new group is added

to the data base. The routine asks for and accepts the

roster number of the roster that the new group is con-

tained in. Then the routine tries to find the

associated ROSTER-REC record. If the find attempt is

successful, the value 4 is moved to KOUNT.

133

OPE Af o»rroT

oret OATA8A*£

A *£/*-*

©

P

 f-n

V
QLClE

0AM£AJ6

' *

(STOP Ruq^j

134

0I5PM7
SOD

I

ROSftR

WrRoritiAre.

DISMAY

I

Hetff

M£iSA(r£

135

pliPLAf

Quesr'Ort-

u_

frrfpomvE
l*l£±lA(-£.

(IT ART "\

ACCEPT

enort TttfMIH*

/TFA*T
\pifiiT-AW- r<<ons

rzi
Aucr

a
i

Q
iTAV ^

ftccerr
leiccto Lint

FtJttrfi Lint
If MAi'-tN^-

136

newrocmr*/

'GO

1
ArAKT \
I Writ -eoviirtZ J

SiTAPr N
[srAQT-PAir-Ro'iMa

r

DA 11:

T
ft£W-STAt?T

ft£W4/*A T*t*

2 IP- tcuriNt

QMt/ttZAr/c/v

oiilAfttlAricrf
f tub

137

mfW-Ottr-ftWIrfh. J

Z
Court e (f-

the-1

cft-e/tr

C*IPV r-

—*-

ifAHT-OAre-

fault

trofit tune '"■£

c/ry-rtAMe-ifr

I

Z

v

I f 6

138

rlA

tfvr1-RecEi>'£\

Accepr OATA,

(rflCup-iorwiTtcA

STOfi£

0 A r A '«- a/r/V /"

z

&
*£i -» ir«»r -«c^-fr/*U

fritter

THtO

139

140

MESSAGE

|t forte

kMTVt TO
0</TPLT

t :.
OUTPUT

141

LAsr-tfKr«e-
onty

HI ft'-'

LMO-£*ir

>

no

Acccrr LAST

f/Ar/E FROrt

f Ht

IA
rEtfflltf/U

*
: SEE

I. ^i
 f

' ' * Tv/rtr"- CCfiRt'cr
F\HO- Rtt-hr- ftetoto FOWIO

OR NO M0/?6
Di//>i/c*;-£-r

■ Ffto-exir ro ihecn
I -

KEY

J££

p.uir-*^'

Phone -

iTAM-Mre-

142

EHD-DATB

ROWr'rfe

I
[tooPeii-eKPLAN D

.0/?

JO

o&5
J f ,,,

^ 11

y-X*0 y
ircrt > »-T

Hi

RtPORT

Fino an
R£(ct>0

ftertovt

pftort

FofieiL-rH

INTO
CirV-/V>4M5-JfT-

I
143

FifiO aH

fiECORP

tio-ary

J6-

pino (ourimy |

ciry-ffAMe-fer

FILE IHTO

Ctri-ftAMe-iSr

TC

FtHO

\0RC-AHliAT<CN-

RBC

HA tit -F"-K

<jR{fAn-HA\Mc-i£ A

Htp-CRfr-

T

(£ e

liAHC-Ff-t.
XfiTC

ORtAfl-HAKfiei

■tctaitiAL

Me MAC
6

(STAfir N
Pfteyg -go*)

Hvnee* A
of eaT£ff

ppft FetiO/AL

*
Sa.£ TT -Cci-l*ti

THRU

A*« -ettr

144

rtevME

0£t.-MS- *AH£\

OCL-R-COMrl-
HAME.

fiOfre*

0/. fteipcmiBinri

TO

145

dtcofr

MESM(r£

NC

rtt

CHAHt-t -
fiOTCll-

Rcspo/ii

fteifCrfS

146

fr**r

^CCfFT NAnt

HUD Rticg0

DliftAY
tfAMe

're*/*!*/**-

Uatt-AI MESifiCE

AP9R6H'

etec AH

ret

noae

ficcepr rie»-n4r*a
re oW't*,,c"

147

T

flHO (.try

RECOUP

X
oftC -pel -

I HAM t

^e pc fir

fino ciry
RECORD

C HAHIrE.

0

KeMcd

z
/^£^-ciry

iHTc (.try-Mm

148

fiePCfiT

\hccepT Nvrt&*
F-ftoM reKMiNAi-

haePT-Roy
Hurt

rut"
AfiN-£Xir

CHA^t %i

ficce'r he* life
Wk/t to it-rite,
(, -neti, R'teMH-

'TMffrfi^S sjrc/
A,cc$t>T tie*

TO ^t

\ftw
< 1

DES (.turner
i£*

f\CC£T fie**'
neve ro
hPpPopRiAJB.

FiBLDS

T

KCV£ TO
/<fPRtn>ATB

F 16 IPS

MODIFY fie(yto\

149

oNtV

Oeuert

REcofiO

rwtu

... 4-
f\m-(tn-nr-
OufiLiCATB

THtU

vCiTlt-KBCORn

FOvHD 0#
NO MOR&
Ovf>t-HAT£S

TO CHECK

KECOGD

i
PElETICff

REPORT-
ROUTIHB

ORlAwiAricfi te£

F trio-fiH, HT-

THRU

rup-exn

FOKJUO o/f

no ricne
OwrntATf i
ro (HECK

WN0
VEieTt

fietcto

REPOSI -
$C*TIH£

VESSAtrE

V

V

150

T
ACCEPr-ROS-

RVTER
1

M51 01 i PL AH

DesmiPlicti -€)
OET cecoRo

-€>
&er PKOAO

DISPLAY
oescMPrtM -<£)

oescfHPricrt -®

Rc*r<ne

151

i
A£ccrr

nut* BE R

MB is AC- E

Ft Arc
Runt-tec

PinO

R-(cMf^irre£

\C TO

TO R-FIAH-

(MN £X\T)~^= ©
152

1
MOVE fMMC
wfiiTt Attofi. r

/■ yrA«p N
V Resins J

OHTlL CogtfCT

OR no nope

(r-(0(1*1- t£C

T
J

C BUD)

H*M£ FOOfiO

off ne MCfi£
TC cnccn

153

rrA*r

~~Tf

COMfl- OR no f-icff
ro CHECK

HAME-e-(CMrt-

REC

(lHtNt-e-ROi7£K-
RESpottS

~v—

HAMS

\HAME FO°"_P

;OR NO MO?*

MOO m

\1£C

on pi-Ay

(eiw)

/" TrAoT X

TEfsrHHAL

M^AC'E.

START

 r-
€>

ACCET /W*f#tf

cfi-Bxtr
:>

ME SJ A(B

154

'<U TO R-Fl^lr

COMMITTEE

J

'XC ro ti-fiKi-

fltiO (rC^^-lltC

'C-C 70 R-ftAK-

CLOiE r*ti

AUtM

RElfCflilGlUlY

ircite. nAnt
Hal til -fee

srefte HAMC-

3L

ST tit ri/^Mt ■
6 -u tArt-Ki<

i rcse HA tie
6->CW/>-*£<

¥.

155

srAtr
u>* i -i, -t oriff.fiA Ht

tiAHh

VI{TIL tune
fcono c£

re cHEcri

<r- IKlM-n'fc

Me Si ACE.

' t TAST "N

F\HO-*ROvr-

riAtfe
FOVMO on
NO Mo fit ru
CHECK

DcmrF. tlAne
C-do^p -Ret

rf£S5Atr£

t no

Dti-Q-iortn-nirtt)

FcvriP of\

nc nets
Tl (H£(ft

f <rAKT \
^DcL-KOL'NAMe)

■VHTIL riAtft
FCUftO c(?
HC Htfit
re (fifc/{

(£"0)

156

IDr'Cf run-*tfour"

NAitf ro

E(W

f sr*nf >.

. b
Acer fno *M/f

trf M

/

F NP

-- *
>i^U JMfr - I

P£\NT'UH£

sroce srAf£-

/""

^
crt0

,F mo -ur>

on *IWMRI-XT

fTrJsr X

{r-lcriM-H/tMC-ifr

157

T777T

)

RC(Ch*0 Of

i r<^ fo^o-tAw

I

c srfitr
lf1p-i:-<CMM-ft/\f1(]

X

ft-i^rffl-nArte-Sfl

C-^r

fit*b NitM-ru-e

fine rtf,r fc..,»i/6trfl
r/AMf-f'id

Gtr
DtiPlA) ttifif,

'tHlCH?"

HO Z

ENf)

158

FifW-rJOJrec-

.'

f\HD fie*r fiA/i£-

R057£f-AMtf£-
sfr

AMer
Ht ADEtf-tfO^T/rtt

I'

P/VD
'*A

tA4r-<Wft-

z
f (RMiHAL

Au f »T t AH *#*<

DvfiHl if(ttn

| To riAHt fco.if)

Ot tt /"£ Owriy

3L TO HArtc ■ fc~rt>

bete fti Ovrirli

IHC-exir

159

LEfT'JOiT J

LAH-LET(Frul)

TO
LtfJ-LETUtlD)

RriO neur

OF

Finv f*i\t'r-i it.

flNt) NEAT

tihf.c-*-(orin- tit i
if A

fi-->"
iv ^ f-Jf re

R'tcr*r;- HA fit.

tfCOlf/

pint) nt tr

HAr;£ -0/?C«'->CT\

160

p\H0 fiArf -rut k--n«

1.

r STAtT

refiniHAL

iTORE Cnl-Ret

urtriL ctry

No MOK C r"

c H e c K

/" iXhfX \
\H£V/-rtfi€HrrlJ

 _*:.. _,

I

TO

161

T

\ '

■

fltfl) frfliv<J-

L-

f'rto R-(crirtttrf(

"i5rf 77 R-fi-AH-

tfMt-lFjftr

\/

U

r

L. j - L- jt (r

e,; i-AfulAtn'fi

f-irtO

cil-AhiiAHui-et-i

iTCHK

er<D A

3j>A(tt "*- /*i«/-L£f r

M * *-e n)<■
UAC1'C»IL

A?f pcAir LfMt

Of ?8?C

€>1P

162

nc-iv-<j>A

I.

T
men

X
£7/4 <T

fitiF T
?IP) dt>t F/Ccn

•tiUnttiAL
KiJv K *"'

1 *

e ND

/" * r A I ~r

€)

163

rt£^ -UiA

lit -fiis'TirtF

HI

MODIFY

jTNS£»cr

tiTy-HAft-if r

EttD

y*o-STATE y
rr^pr

KG-STA^

,—J—

fid err tie*
c try t irfiU

ft, u, -i-err re HAH

./" ^ i

i' cm)

en i"c

re

164

c STAfir

T
4 H IHD

SPA<< ;c new-M

l re f-ntf
c rt r c>y p/n>

£ no)

FniJ

'' '" /V QtO-lKPvT

FXCM fHB 1*0

iAir -ur cfrtf) /•«

tfr IX Ait£ tt>A<f

T

165

tfe&AC-E

I
Th*u

Ert(?

tat utjr'o^-Amv^cR/

f
Ac<tvr w^r

L J-txir

a
(^ctiD J

i rAtr
RCi-<ori -ADO-

rfiinl-i-trtc.

fVO

£■££

0

El

/
rt£SJ/lfr£

4. re nco«r

^T
SHi--C*ir

166

APPENDIX E

DOCUMENTATION AND FLOWCHART

FOR INQUIRY PROGRAM

167

DOCUMENTATION FOR THE INQUIRY PROGRAM

The inquiry program (READDB.CBL) is a COBOL

program designed to allow a user to interrogate the data

base concerning the data listed for an individual

member. The interrogation is to be done interactively.

The program accesses the data base in retrieval mode,

hence can only read what is in the data base, and can-

not affect the contents of the data base.

The program starts by opening the areas of the

data base in retrieval mode, and then displays a

message describing what the program does, and how to

answer questions.

The next paragraph, called REQUESTS, actually

starts the questions asked of the user. The routine

QUESTION-ANSWER THRU QA-EXIT (line 10700) is used to

move the answers to questions to the data item TYPE-

UPDATE, which is then tested for the actual input. The

first question asked is whether the record to be checked

is for a person member or for an organizational member.

If the input is anything other than P or 0 the program

ceases execution. If P is input (or anything starting

with P), PERSON-MEM THRU PM-EXIT (line 12100) is per-

formed to find the record of the correct member. If 0

168

is input (or anything starting with O), then ORGAN-MEM

THRU OM-EXIT (line 17100) is performed to find the

correct record. If the member's record cannot be found,

a message to that effect is displayed, and the program

branches back to REQUESTS.

If the record is found, the program asks if the

user wishes to see the associated geographical data.

If the answer is yes, the routine GEO-DISPLAY THRU GO-

EXIT (line 26000) is performed. The next question is

whether the user wishes to see the associated organiza-

tion. If so, the routine ORG-DISPLAY (line 10610) is

performed.

The user is then asked if the phone number, the

start date, and the end date are to be shown. Finally

the user is asked if a list of committees is to be dis-

played. If the user wants the list, ROSTER-LIST THRU

RL-EXIT (line 22000) is performed. Then the program

branches back to REQUESTS.

ALPHABETICAL LIST OF ROUTINES

GEO-DISPLAY THRU GO-EXIT (line 26000):

This routine first tries to find the city of the

member. If the attempt is unsuccessful, the routine

displays a message to that effect, and ends. If the

city's record is found, the routine finds the country,

169

and checks to see if the country is the United States.

If it is, the country, state, and city are displayed.

If the country is not the United States, the country

and city are displayed.

LEFT-JUST THRU LJ-EXIT (line 20700):

This routine is used to left justify input names.

It looks for the first non-blank character, and start-

ing with that one, moves the input, character by

character, to the data item NEW-LEFT.

ORG-DISPLAY (line 10610):

This routine tries to find the member's organi-

zation. If the attempt is unsuccessful, a message to

that effect is displayed. If the attempt is successful,

the organization's name is displayed.

ORGAN-MEM THRU OM-EXIT (line 17100):

This routine asks for the name of the organiza-

tional member whose record is to be interrogated. LEFT-

JUST THRU LJ-EXIT (line 20700) is used to left justify

the name. The name is moved to NAIM, and the routine

then tries to find the associated record. If the

record cannot be found, the routine ends. If the record

is found, the name and address are displayed, and the

user is asked to verify that the correct record has been

found. If it has. the routine ends.

170

If the user indicates that the correct record

has not been found, the routine looks for a record of a

member with the same name. If there is no such record,

a message to that effect is displayed, and the routine

ends. Otherwise, the above process is repeated until

either the user indicates the correct record has been

found, or there are no more records to check.

PERSON-MEM THRU PM-EXIT (line 12100):

This routine acts just like ORGAN-MEM THRU 0M-

EXIT. The only difference is that the member's name

is input in three parts, first the last name, then the

first name, and then the middle name.

QUESTION-ANSWER THRU QA-EXIT (line 10700):

This routine is used to move answers to questions

posed by the machine to the data item TYPE-UPDATE. The

routine looks for the first non-blank input character,

and if it finds one, moves the character to TYPE-UPDATE.

ROSTER-LIST THRU RL-EXIT (line 22000):

This routine is used to display the description

of any roster, group, or committee that the member is on,

along with the member's responsibility on that roster,

group, or committee.

The routine starts by looking for the member's

name connected to a roster. If it finds such, it

171

accesses the roster record, displays the description

of the roster and the member's responsibility, and looks

for the next roster connection. The above process

repeats until the routine finds all rosters that the

member is connected with. Then it does the same for

roster committees, groups, and group committees in

that order.

172

I <D

rASff//f<r/4&N"~
P£fi50rt ^

Src? K^/Y

PH-Sjur

173

' JTAtT

CrbC-OlSfLAV

T
Fl^i? CIT1

fit\0 (0^f*Y

CIT1

n^D-ttir

k>

MC-'t cMfACrt^

ytJ

LJ - etir

fKOO i To

I/HO, pug

SrAtr

DiiPLAY

MESSAGE.

QBHQ)

174

c STAKT

i\QC£p~ n*Mc

Pis PL AY

hOOfiBSS

FIMO Kttr

6i I DISPLAY

175

>PECSOrt-M£M

HAM, Flt*r

FT NO RHORQ

F INQ fiEiT

176

f StAtr N

i re rn$

rvrf - <jfoAJ£

M A 00 i re ^ofi*

G/i-e/ir

f/rtO A*f/r fVim-

PUPLAY

l)A"M

OF
NAMt-R-Crin-it'T

Fl^O NE'T

c t

DiiHAy

OATA

(%L-^Trr

177

APPENDIX F

DOCUMENTATION AND FLOWCHART FOR INTERFACE PROGRAM

178

DOCUMENTATION FOR THE INTERFACE PROGRAM

The interface program (TEMPFI.CBL) is a COBOL

program designed to give selected lists culled from the

data base. The lists are by rosters, committees, and/or

groups. The program can also supply an alphabetical

list of the entire membership, or give a listing of all

rosters, broken up into groups and committees when rele-

vant , together with members. The program accesses the

data base in retrieval mode only. The desired list is

on a disc file called ROSLIS.DAT. The program is

interactive only to the extent of accepting which

rosters, committees, and/or groups should be on the list

from the user.

The program starts by opening the output file

and the data base areas. It then displays a message

explaining the user options, and performs ACCEPT-ROS-NUM

THRU ARN-EXIT (line 34700) to receive the user input.

The program then checks to see which option the

user has selected. If ABC was entered ALPHABETICAL-LIST

THRU ALPH-EXIT (line 14200) is performed to give an

alphabetical list of the membership with associated

data. If ALL was entered, the program finds the first

roster record in the appropriate data base area (this is

179

done to provide a focal point for finding the next

roster). It then performs ROSTER-MOVE THRU ALL-EXIT

(see ALL-ROSTERS) to process that roster, and then

performs ALL-ROSTERS THRU ALL-EXIT (line 21700) to

process the remaining rosters. If ROS was entered

0NLY-R0S THRU OR-EXIT (line 41800) is performed to

give a list of the rosters, groups, and committees.

If neither ABC, ALL, nor ROS was entered, a

selected list of rosters, groups, and/or committees

was entered and stored in the table ROS-STUFF. NUM-

ROS-IN contains the total number of entries made. ROS-

OUT (n) contains the number of the nth entry, and FLAGG

(n) contains the kind of the nth entry.

The entries are processed one at a time. When

all are processed, the program ends. If an entry is a

roster ROSTER-MOVE THRU ALL-EXIT (see ALL-ROSTERS) is

performed. If an entry is a roster committee R-C0MM-

MOVE THRU INTERNAL-EXIT (see ROSTER-WITH-COMM) is

performed. If an entry is a group GROUP-MOVE THRU

INTERNAL-CHECK-2 (see ROSTER-WITH-GROUPS) is performed.

Finally, if an entry is a group committee G-COMM-MOVE

THRU INTERNAL-CHECK-1 (see ROSTER-WITH-GROUPS) is

performed.

180

ALPHABETICAL LIST OF ROUTINES

ACCEPT-ROS-NUM THRU ARN-EXIT (line 34700):

This routine accepts input from the user, and

checks its validity. It starts by asking for input. If

blanks are input, the routine ends. If anything else is

input, the routine performs NUM-RECEIVE THRU NR-EXIT

(line 34600) to move the input to the data item NEW-ROS-

NUM. If the input is ALL or ABC, the routine ends.

With any other input, the routine checks the data item

BAD-INPUT to see if the input is in the right form. If

it is, the routine checks the rosters, roster committees,

groups, and group committees, in that order, looking for

the desired entity. When it is found, its number and

kind are stored, and the routine asks for the next

number. If at any time the user input is not good, an

error message is displayed, and the user is given the

chance to reenter the input. If three successive bad

inputs are entered, the program will terminate.

ALL-ROSTERS THRU ALL-EXIT (line 21700):

This routine is used when the user has entered

ALL. It also contains the coding used to process a roster

which was entered as part of a selected list.

The routine starts by finding the next roster

record. If there is no next roster record, the routine

181

ends. If there is another record, paragraph ROSTER-MOVE

starts the actual processing of the roster.

ROSTER-MOVE saves the data base key of the roster,

moves the roster data to the output line, and writes the

output. Then it checks to see if the roster has groups.

If the roster has groups, the routine ROSTER-WITH-GROUPS

THRU RWG-EXIT (line 25300) is performed to complete

processing of the roster.

If there are no groups, the routine checks to

see if the roster has committees. If it does, ROSTER-

WITH -COMM THRU RWC-EXIT (line 31500) is performed to com-

plete processing of the roster.

If there are neither committees nor groups,

paragraph ROSTER-ALONE is used to process the members of

the roster. The next name on the roster list is found.

If there is no next name, the roster record is found via

its data base key (so that the next roster may be found)

and processing of the roster is completed. If a name is

found, its data base key is saved, its member record is

found, and NAME-FILE-MOVE THRU WRITE-IT-IN (see ALPHABE-

TICAL-LIST) is performed to process the member. Then

the roster record and the list name are found with their

data base keys (so that the next name on the list may be

found) and the routine branches back to ROSTER-ALONE.

182

ALPHABETICAL-LIST THRU ALPH-EXIT (line 14200):

This routine is used when ABC is entered by the

user. It also contains the coding used to process a

member whose name appears on a roster, group, or

committee list.

The routine starts by finding the next member

record. If there are no more member records, the routine

ends. If there is another one, paragraph NAME-FILE-MOVE

starts the processing of the record.

NAME-FILE-MOVE saves the data base key of the

member record, moves the member information to the out-

put line, finds the member's geographic and organiza-

tional data and moves that to the output line. The

paragraph WRITE-IT-IN is used to write the output line.

Following that, the routine branches back to ALPHABETICAL-

LIST.

NUM-RECEIVE THRU NR-EXIT (line 39600):

This routine is used to move user input data to

the data item NEW-ROS-NUM. It considers only the first

three input characters. It moves them character by

character, starting with the right-most character, to

NEW-ROS-NUM. Then it replaces blanks by zeros, and

checks the input to see if it is numeric.

ONLY-ROS THRU OR-EXIT (line 41800):

This routine is used to produce a list of the

183

rosters, groups, and committees without members. It

starts by finding the first roster in TALL-AREA, and

performing ROSTER-MOVE (see ALL-ROSTERS) to write the

roster's record. Then the routine branches to COUlf-

CHECK to see if the roster has committees. If not,

the routine branches to GROUP-CHECK.

If the roster has committees, the routine

successively finds their records and performs R-COMM-

MOVE (see ROSTER-WITH-COMM) to write the records. When

all the committees of that roster have been processed,

the routine goes back to NEXT-ROS to start processing

the next roster record.

GROUP-CHECK checks to see if the roster has

groups. If not, the routine branches back to NEXT-ROS

to start processing the next roster. If the roster has

groups, GROUP-MOVE is performed to process the record of

the first group. Then the routine branches to NEXT-COMM-G

to process the records of the committees in the group.

When all the committees in the group have been processed,

the routine branches to NEXT-GP to start processing the

next group of the roster, and the above process is

repeated. When all the groups have been processed, the

routine goes back to NEXT-ROS to begin processing of the

next roster. The routine ends when all the rosters have

been processed.

184

ROSTER-WITH-COMM THRU RWC-EXIT (line 31500):

This routine is used to process a roster which

is broken up into committees. It also contains the

coding used to process a roster committee entered by

the user. In general, it takes a committee, writes

the committee details, writes the details for each

member of the committee, and goes on to the next

committee.

The routine finds the next committee of the

roster. If there is no next committee, the routine ends.

If there is another committee, paragraph R-COMM-MOVE

starts the processing.

R-COMM-MOVE saves the data base key of the com-

mittee, moves the committee details to the output line,

and writes the output line. Then it finds the next name

on the committee list. If there is no next name, the

routine branches to INTERNAL-EXIT. If there is another

name, its data base key is saved, its member record is

found, and NAME-FILE-MOVE THRU WRITE-IT-IN (see ALPHA-

BETICAL-LIST) is performed. Then the list name and the

committee are found with their data base keys, and the

routine branches back to get the next name.

After INTERNAL-EXIT, the roster and the committee

records are found with their data base keys, and the

routine branches back to ROSTER-WITH-COMM.

185

ROSTER-WITH-GROUPS THRU RWG-EXIT (line 25300):

This routine processes a roster which is broken

up into groups. It also contains the coding to process

a group and a group committee. Its general strategy is

to process a group followed by all the members whose

names are on the group list. Then it successively pro-

cesses each committee of the group followed by the

members of the committee. When a group has no more

committees, the routine goes on to the next group.

The routine starts by finding the next group

contained within the roster. If there is no next group,

the roster record is found with its data base key, and

the routine ends. If there is another group, paragraph

GROUP-MOVE starts its processing.

GROUP-MOVE starts by saving the data base key

of the group, moving the group details to the output

line, and writing the output. Then the next name on

the group list is found. If there is no next name, the

routine branches to GROUP-COMMITTEES. If there is

another name, its data base key is saved, its member

record is found, and NAME-FILE-MOVE THRU WRITE-IT-IN

(see ALPHABETICAL-LIST) is performed. Then the group

and the list name are found with their data base keys,

and the routine branches back for the next group name.

GROUP-COMMITTEES finds the next group committee

186

within the group. If there are no more committees, the

program branches to INTERNAL-CHECK-2. If there is

another committee, paragraph G-COMM-MOVE starts.

G-COMM-MOVE saves the data base key of the

committee, moves the committee details to the output

line, and writes the output. Then it finds the next

name on the committee list. If there are no more names

on the list, the program branches to INTERNAL-CHECK-1.

If there is another name, its data base key is saved,

its member record is found, and NAME-FILE-MOVE THRU

WRITE-IT-IN (see ALPHABETICAL-LIST) is performed. Then

the committee and the list name are found with their

data base keys, and the routine branches back for the

next name.

After INTERNAL-CHECK-1, the group and the

committee are found with their data base keys, and

processing returns to GROUP-COMMITTEES.

After INTERNAL-CHECK-2, the roster and the group

are found with their data base keys, and processing

branches back to ROSTER-WITH-GROUPS.

187

STAAr

r- —

fit*/-

r
DISPLAY
oprio/15;

f\lPt*BETKAt

rrtU-^FA

f\LL-E A\T

*

£

-®
AtibfiS

(srcr Rurt J

St f

VtlTIL

Ht

HCfi t

188

THto

Att •£ nr

EXir

7

rn*o
ctirtrnn/si.-

cHe<n ~z

Z3

rhRv

J cnatn-1

€>

' /ALL'liOiTERi

S £ £

S6£

RQir£f- WITH-

189

MCUAfrf

&

fino tarfC'trc

THKU

MR-fAir

froei r» «t**-*ft ,J

tofNttnefn -©

ADi) / 7 0

ne if -@

F ino

too i ro

neer

lotfirtt-itfi
<t)

i c rir\ i r r ft'

AOo t ro

"*>"-«*-'" LTD\

I OtfiUfUKS

190

f-1E5Mk£

ALL-GOITERS.

or

£
wnre t etc JO

,—l—
/ (NO

Au-f*ir J

lt<MC-£X /T <D

©
r hitv

191

fen
Alf»4tfrjcAf

[htfaAtt utM -fir

1 U~
—<*■

FIHU /it IT

HAW'
1 l£ or

•TICAL-

SET

©

(HJW-WT

Af>r ~~~\

MOOa OATA It

iHfo.we '"
owTpur
<y CTORtAnckAtuit
we re CJTPOT

FIHO riexr
HAnc-i?oirtR-itt.<\

or

<D

Pino rieir
H/tfif-*-c«if-<£t|

cr

re Q*st?vr
6-er earf\'t£(Q>'0

FIHO Htxr

HA ME-£*&'•*£<■
cf

riAHc-L-fKW-frri

p/Vt> HEtr

OP

pwc tfirc»nit,i.iTy
TO Cw>A"~

(,(T lonHtttt C
teuAO

M*/J hvrtiti*
%\>;**t •<»*&

T» OvTUr

0*1t>Vl -(tOi

tit/* tttWMsiginry
fi cvTr*r

ttfr en* IT res

v^/t ire o<Jii>i/r

192

!T)
4 to tHO
jCMf TO

tUfltHC non-Kj-irt

PHI/ ro
HUM-rriitriOi

193

f rrA»r \
\oHLi-aos J

1
FIHD pi«$r

rALL-ARBA

ROSTER-nov/e -©

OF

T/\u-A&£/\

r©'
0 /=

j?o<r£ ^-no/fi

jp-CoMH-Aftfvfi

QfiO^f^-MOUE

I

194

©■

(rRfrV-rtO^i

^-foMcf-rKVf

Rwc-air

f «P tf-civ**-/*^

FiHlf HS-fiT

of

tlAHt-rii-t-ric*t
Th£*J

ffie ALfttseencAL-Lisr

195

UOJ

17*77 \

fMo ne.tr
(,$<*>!>'tec

of

f»»
Fi/v Mir

OF

flcioiD

,'

STAxr

>f\-/

WiiiTE ftCCCfiD

or

[HTtCKAl-

Set

LIT r

MIA u c-.v^r

1=^
f/rto -reir
rt*MC •(, -to-iff rt<

Or

C.-fOAtrf Mr'«" -i/r

NAHt" -tikf- n-vt"

196

APPENDIX G

USER MANUALS

197

USER MANUAL FOR THE UPDATE PROGRAM

I. INTRODUCTION

The update program allows the user to add a new

record to the data base, modify an existing record,

and/or delete an existing record. The additions can be

for a new person member, a new organizational member, or

a new roster, group, or committee. The modifications

can be for any item in the record of a member, or for

any item in the record of a roster, group, or committee

except the field used for the internal identification

number (should the user wish to change that item, it

would be necessary to delete the old record and create

a new one from scratch, including re-linking all the

members). In addition to the above listed modifica-

tions, the user can change the organization and/or

geographic lists that a member is on. The user may also

alter the links to rosters, groups, and/or committees

for an individual member, and/or alter the special

responsibility the member has with those rosters, groups,

and committees. Changes of the types mentioned in the

last two sentences can only be made by accessing the

record of the individual member first. The record of a

member, roster, group, or committee can also be deleted

198

completely from the data base. The deletion of a

member's record will automatically delete the name from

all lists that it was on, so there is no need to

separately remove the member's name from the lists.

The user can obtain information about what is

currently in the data base by running the interface

program (TEMPFI.CBL) and getting a printout of the

created file. This will provide the user with geogra-

phical and organizational data for each member, and

also a list of the rosters, groups, and committees that

the member is on, together with the member's respon-

sibility.

The user can also obtain data in two other ways.

For a limited number of members, it may be preferable

to use the inquiry program (READDB.CBL). For a complete

dump of the data base, together with all linkages, the

utility DBINFO (see the recovery manual) can be used.

The update program is written so that during

execution all user input follows the prompt ==>.

Whenever the prompt appears, the machine waits for user

input. The user should enter the correct data, and then

press the return key. If there are no values to input,

just press the return key. This is equivalent to input-

ting all blanks. If a mistake is made before the return

key is pressed, the entire entry can be remade by holding

199

down the CTRL key, and pressing U. The actual input

starts with the first non-blank character, so spacing

before an entry is not relevant, as long as the total

input is not more than 50 characters.

In some cases the machine will recognize im-

proper input, and will print a message to that effect.

In such cases the user will usually have the opportunity

to try again. In general, should the user enter three

consecutive improper inputs, the program will cease

execution. When the input must be a specific type, the

machine will usually print a message explaining what is

considered valid.

It is possible that during execution a data

base exception will occur. If it does, a message will

appear which looks like

STATUS/AREA/RECORD/SET - /.../.../...

In place of the four blanks, there will be a three or

four digit number called the error-status. The dots will

be replaced either by a blank or by data names used in

the data base description. A particular example could

be something like

STATUS/AREA/RECORD/SET - 322//ORGANIZATION-REC/ORGAN-NAME-SET

which could occur if the machine tried to find the orga-

nization of a particular member and the member had no

organization listed.

200

An isolated exception message should not be

cause for concern. However, should they appear fre-

quently, or should the last two digits in the error-

status be higher than 50, it is likely that the DBMS

system has crashed. In such a case cease execution as

soon as possible (try not to abort the program prema-

turely, however) and report it to the director of

computer systems at Fritz Lab. Generally, updates

made prior to a system crash will be intact, and those

made after the crash will be non-existent. The update

in progress during the crash could be messed up. It

may be advisable to delete that record, and reenter

it when system recovery has been completed.

During execution of the update program files

are created on disc listing the additions, deletions,

and modifications. The files are called ADDED.DAT,

DELETE.DAT, and CHANGE.DAT. If a listing is desired,

ask for the listing before the update program is run

again, because at that point the old files will be

deleted.

The program is written so that the machine will

display a message about each user input. Some of the

messages take several lines. If there is a large number

of updates to make at a given sitting, the user may

prefer to use a hard-wired CRT (there are some, for

201

example, at Christmas-Saucon) to decrease the time

necessary for the message displays to appear, hence to

speed up the overall process.

II. ADDITIONS

The user is first asked to enter P,0,R,C, or G

to represent the addition of a person member, organi-

zational member, roster, group, or committee. Any

input starting with one of those characters would be

acceptable. Thus, if the user were to enter PETUNIA,

the program would branch to the coding used to process

the record of a new person member. If any character

other than those listed above is entered, the machine

will display an error message.

A. NEW PERSON MEMBER

First the machine will ask for the last name of

the person, then the first name, and then the middle

name. The last name can be up to 20 characters long

(starting with the first non-blank character), and the

first and middle names can be up to 14 and 13 characters

respectively. Excess characters will be ignored.

Following the name, the machine will ask for the title,

e.g. Mr., Miss, Ms, Dr., Prof, etc., which can be up to

17 characters long.

202

After the title the machine will request the

address as it would appear on a four line address label.

The address as given in this part is not checked for

content, but merely stored as input. The city and

state or country, which are used mostly for sorting

purposes, and the zip code will be requested later.

The zip code will be placed as the last 5 characters on

the fourth line, and should not be entered until speci-

fically requested. The second, third, and fourth lines

of the address are stored as entire fields and should be

entered exactly as the user wishes to see them on a

label even if it means repeating the city and state or

country. The second and third lines can be up to 32

characters long, and the fourth line can be up to 33

characters long (28 if space is to be reserved for the

zip code).

Following the address, the computer will ask if

the person is located in the United States. This is the

only yes-no question which needs specific input, i.e.,

Y or N. If Y is entered, the computer will request the

state (up to 27 characters). If N is entered, the com-

puter will request the country (up to 32 characters).

After state or country, the computer will request the

city (up to 32 characters). If the state or country is

not one for which the data base has an existing record

203

(which would probably be the case if the entry were

misspelled), the computer will ask the user to reenter

the name. This should be done even if the original

spelling was correct. If the city is in a state or

country that had previously been in the data base, then

the computer will also ask for a reentry if it cannot

find the city as an existing record. These are the

only cases for which the program provides facilities to

correct possible input errors during an update. It is

done here to avoid cluttering up the data base with

extraneous records which would never be used. In other

cases errors can be corrected by using the update program,

The next items the computer asks for are the

phone number, the starting date, and the organization of

the member. The display explains how to enter the phone

number and starting date. The organization name can be

up to 34 characters.

Finally the computer will ask for the rosters

that the person should be linked to. This means rosters,

committees, and groups. Before it does so, there might

be a slight delay, as the machine has some processing

to do. The delay should not be more than 2 or 3 seconds.

Then the user should enter the identifying number (up

to three digits) of each entity as the machine requests

them. The rosters, groups, and committees must have

204

been previously entered into the data base. After the

member is linked to each roster, group, or committee,

the computer will request the member's responsibility

within that entity. If there is no special responsibi-

lity such as chairman, editor, etc., this entry may be

left blank. Up to 6 characters may be entered, but

only the first one will be used in many applications.

When the last connection is made, the user should enter

blanks as a signal that the inputs are finished.

B. NEW ORGANIZATIONAL MEMBER

The computer starts by asking for the name of

the organization. The name should be entered as one

line using up to 34 characters. Then, starting with

questions about the address, the computer will ask the

same questions as it does for a new person member, except

that it will not ask for a title or an organization.

C. NEW ROSTER, GROUP, OR COMMITTEE

The computer will start by asking for the number

of the roster or committee. This actually means roster,

group, or committee. The entry should be an integer

number up to three digits, and should be unique, i.e.,

it should not be in use currently for any existing

roster, group, or committee.

The next item the computer will ask for is the

205

roster or committee type. This should be a 2 character

entry. The type was originally used as the first two

characters of the eight character identifier used with

the old system. For example, roster 20S had the type

SC for steering committee.

The next request will be for the identifier.

The identifier was originally used as the last six

characters of the eight character field used for identi-

fication under the old system. Of course it is not

necessary to use all six characters. The identifier for

roster 20S would just be 20S.

Following the identifier, the machine will ask

for the output code. The output code is a 4 character

field which will be used to identify the roster, group,

or committee on certain printed lists.

After the output code, the machine will ask for

the description. The description is in two parts as

explained in the machine display.

If the new entity is a roster, the machine will

store the new record and then ask for the next update

from the beginning. If the new entity is a group, the

machine will ask for the identifying number of the roster

that the group should be contained in. Again, this

number is a 3 digit number unique for the roster. The

roster must have its record already entered into the

206

data base.

If the new entity is a committee, the machine

will ask for the number of the roster that contains the

committee. If it is a group committee, the user may

enter the number of the group that contains this

committee. If the user enters the roster number, the

machine will then ask for the associated group anyway.

Remember that if a new group or roster committee

is added, the associated roster must have its record

already in the data base. If a group committee is

added, the associated group must have its record

already in the data base.

III. MODIFICATIONS

The machine will start by displaying a message

explaining the types of modifications which may be made.

In this context the word ROSTER is used as a generic

term meaning either roster group or committee. The user

should enter either P (for person member), 0 (for organi-

zational member), or R (for roster, group, or committee)

No other input will be accepted by the machine.

A. MODIFICATIONS FOR A PERSON MEMBER

This branch of the program directs the machine

to start by asking if the user wants to enter only the

207

last name, and have the machine search through the

records of all the members with the input last name, or

if the user wants to enter the entire name. If the user

elects to enter only the last name, the machine will

display successive names and addresses until the user

indicates (by entering Y) that the correct record

has been found.

Entering the entire name is quicker. If the

user elects to enter the entire name, the machine will

ask, in this order, for the last name, the first name,

and the middle name of the person as three separate

inputs. It is very important to enter the name exactly

as it is recorded before the change. If the name is

not entered correctly, the machine will not be able to

find the correct record for modification. If the name

is entered correctly, the machine will display the

person's name and address and ask the user to verify

that the correct record has been found. This is

because it is possible for several members to have the

same name. If the user indicates that the record is

not the record for the correct member, the machine will

look for a record of a member with the same name and

repeat the above process. This will continue until

either the correct record is found or there are no more

records to check. In the latter case, a message to that

208

effect will be displayed. The user makes the asked for

indication by entering either Y (or any word starting

with Y) to indicate the record is correct, and anything

else to indicate that the record is not correct.

Once the correct record is found, the computer

will ask if the user wants to change the name. If the

answer is yes, the entire new name must be entered as

it is requested, even if the only change is for one

part of the name, e.g., to change the first name from

just an initial to the entire first name.

After the name question the computer will ask

about changing the title. Then it will ask about chang-

ing the address as it appears on an address label. If

the address is to be changed, the entire new address

must be entered, even if a change occurs on only one

line of the address. Changes to the address refer also

to changes to the zip code. If the zip code is unknown,

just leave it blank. The rules for entering an address

during a modification are the same as the rules for

entering an address during an addition.

The next three questions, in order, are about

changing the phone number, changing the starting date,

and entering an end date. Then the computer will ask if

the state or country is to be changed. If the answer

is yes, the computer asks if the new country is the

209

United States. If it is, the machine will ask for the

name of the new state, and then ask for the name of the

new city. If the new country is not the United States,

the machine will ask for the name of the new country

followed by the name of the new city.

If the user does not want to change the state or

country, the machine will ask if the city is to be

changed. In this case and in the cases in the previous

paragraph, if the new geographical entity is one for

which the data base does not have an existing record,

the computer will ask the user to reenter the name.

This is protection against an input mistake. It is

used to avoid cluttering up the data base with extra-

neous records.

Following state, country, and/or city changes,

the machine will ask if the person's organization is to

be changed. Then it will consider changes in roster,

group, and/or committee affiliations. Again ROSTER is

used as a generic term to stand for roster, group, or

committee. As stated in the display, the machine con-

siders deletions, additions, and changes in responsibi-

lity in that order. By deletions, the machine means

deleting the member's name from a roster, group, or

committee list. By additions, the machine means adding

the member's name to roster, group, or committee lists.

210

In this case the responsibility on the roster, group,

or committee must also be added. A person has a

change in responsibility if his or her name remains on

a roster, group, or committee list, but the special

responsibility within that roster, group, or committee

is to be changed.

Changes in roster, group, and/or committee

affiliations are handled one such entity at a time, in

the order specified above. The user is asked to start

each change by entering the identifying number of the

entity involved. When changes of one type have been

completed, a blank should be entered as a signal to go

on to the next type.

B. MODIFICATIONS FOR AN ORGANIZATIONAL MEMBER

These are almost the same as modifications for

a person member. The main differences are that the name

is entered as a whole instead of in parts, and there are

no questions about changes in title or organization.

Also, since an organization cannot be a chairman, vice

chairman, editor, etc., of a roster, group, or committee,

there are no questions about changes in responsibility

when changes in roster affiliations are considered.

C. MODIFICATIONS FOR A ROSTER, GROUP, OR

COMMITTEE

211

The computer will first ask for the roster or

committee number. This means the three digit identify-

ing number of the roster, group, or committee. This

identifying number is the only data item in the record

of a roster, group, or committee which cannot be

modified.

The first question asked is if the user wishes

to change the type. The type is the first two

characters of the eight character identifier used with

the old system. For example, roster 20S had the type

SC for steering committee.

Next the machine will ask if the identifier is

to be changed. The identifier is the last six

characters of the old identification. Of course it is

not necessary to use all six characters. In roster 20S

the identifier is 20S.

After the identifier, the next item considered

for change is the description. Finally the output code

is considered for change. The description is in two

parts, the first is 32 characters, and the second is 30

characters. If there is a change, both parts must be

reentered.

IV. DELETIONS

The machine starts by asking the user to enter

212

P, O, or R. P is entered if the record of a person

member is to be deleted. 0 is entered if the record of

an organizational member is to be deleted. R is entered

if the record of a roster, group, or committee is to be

deleted.

A. DELETION OF A PERSON MEMBER'S RECORD

The user is asked if he (or she) wishes to enter

only the last name, or the entire name. If the user

elects to enter the last name only, the machine will

successively display the names and addresses of all the

members with the given last name until the user indi-

cates (by entering a Y) that the correct record has

been found. If the user elects to enter the entire name

(which is quicker), the machine will ask for the last

name, the first name, and the middle name in that order.

The name must be entered exactly as it is presently

recorded in the data base. Then the machine will dis-

play the name and address of the person, and ask the

user to verify that the correct record has been found.

This process will continue until either the correct

record is found, or there are no more records of members

with the input name.

B. DELETION OF AN ORGANIZATIONAL MEMBER

The user is asked to enter the name of the

213

organization. Then the machine proceeds as in the case

of a person member.

C. DELETION OF A ROSTER, GROUP, OR COMMITTEE

The user is asked to input the three digit

identifying number of the roster, group, or committee.

Then the description of that entity is displayed, and

the user is asked to verify that the correct entity is

being considered for deletion.

V. FINAL COMMENTS

A. USE OF THE UPDATE PROGRAM

To avoid confusion, the update program is

designed so that it cannot be used if the data base is

being used for any other purpose, say for the inquiry

program or the interface program. That means the update

program cannot access the data base until all other

applications have exited from the system. Similarly,

once the update program connects to the data base, no

other application can access the data base until the

update program makes a normal exit.

B. FAILURE TO EXECUTE

The user may find that for no discernable reason

the machine will not execute a particular command (if

214

the system crashes, the reason is definitely discern-

able). A possible explanation for this is that the DEC

system software (i.e. the vendor supplied program which

carries out the application program commands about the

data base) is still new and to a certain extent experi-

mental. All the "bugs" have not been removed. Often

difficulties can be overcome by starting the particular

update over (do not re-do the parts that did execute)

or even ending the execution of the update program and

starting over (again, do not re-do the parts that did

execute).

215

USER MANUAL FOR THE INQUIRY PROGRAM

The inquiry program is a program written to

allow a user to interrogate the data base about the

data associated with an individual member. Should the

user wish a list of the members associated with a

particular roster, group, or committee, the interface

program (TEMPFI.CBL) can be used for that purpose. The

inquiry program is designed to work interactively. It

does not create any files. It cannot change anything

in the data base, but can only read what is already there.

The inquiry program is written so that during

execution all user input follows the prompt ■=> .

Whenever the prompt appears,the machine waits for user

input. The user should enter the correct data, and then

press the return key. If there are no values to input,

just press the return key. This is equivalent to input-

ting all blanks. If a mistake is made before the return

key is pressed, the entire entry can be remade by hold-

ing down the CTRL key, and pressing U. The actual-input

starts with the first non-blank character, so spacing

before an entry is not relevant, as long as the total

input is not more than 10 characters for one letter input,

and 50 characters for name input.

216

The user is first asked to input P or 0 to

indicate whether the record to be interrogated is for

a person member, or for an organizational member.

The user may actually enter anything starting with

either of those letters, as the program is written so

that it will only look at the first non-blank character

of the input in this case. If anything other than P

or 0 is entered, the machine will regard it as a signal

to end the program, and will cease execution. For

questions that can be answered "yes" or "no", the

machine will regard any input beginning with Y as a "yes"

answer, and anything else, including blanks, as a "no".

After identifying the type of member, the user

will have to enter the member's name. It is very

important to enter the name exactly as it is presently

recorded. If the name is entered in any other form, the

machine will be unable to locate the correct record. The

name of a person member is entered in three parts (any

of which can be blank) as the machine requests them. The

last name is entered first, then the first name, and then

the middle name. For an organizational member, the name

is entered all at once. After the name is entered, the

machine will try to find the associated record. If it

cannot be found, the machine will display a message to

that effect. If the name is found, the machine will

217

display the name and address, and ask the user to verify

that the correct record has been found. This process

will repeat until either the correct record has been

found, or there are no more records of members with the

input name. The above procedure is carried out because

it is possible for several members to have the same

name.

Once the correct record is found, the machine

will ask, in order, if the user wants to see the geogra-

phical data, the associated organization, the phone

number, the start date, the end date, and finally a list

of committees that the member is on. By committees

the machine means rosters, groups, or committees. In

each case the user is asked to indicate whether the

particular item should be displayed. When the questions

are finished, the machine will ask about the next

member.

218

USER MANUAL FOR THE INTERFACE PROGRAM

The interface program is used to create a

temporary file of selected rosters, groups, and/or

committees for the project application programs to work

on. The created file is called ROSLIS.DAT. The user

should be sure that the old temporary file is either no

longer needed, or copied to another file name, because

whenever the interface program is run, the old

ROSLIS.DAT is automatically deleted.

User interaction with the interface program is

limited to entering the roster, group, and/or committee

numbers wanted in the selected list. If a committee

number is input, a logical picture of the output will

be

committee data

member 1 data

member 2 data

member n data

If a group number is input, a logical picture of the

output will be

219

group data

member 1 data

member n data

committee 1 data

member 1 data

member nl data

committee 2 data

member 1 data

member n2 data

committee m data

member 1 data

member DID data

If a roster with neither groups nor committees is entered,

the output will be similar to that of a committee. If a

220

roster with groups is entered, the output will be

roster data

output for group 1 (see above)

output for group 2

output for group n

If a roster with committees is entered, the output will

be roster data followed by committee output (see above)

for each committee in the roster.

The user has three other options. ABC can be

entered, which will produce an alphabetical list of the

entire membership. Also, ALL can be entered, which will

produce roster output, with members, for every roster in

the data base (hence every group and committee also).

ROS can be entered, which will produce just a list of

rosters, groups, and committees, without members.

The machine will request each user input. Should

the user entry be invalid, the machine will display an

error message, and request the entry again. Three con-

secutive invalid inputs will cause the program to ter-

minate .

All user input will follow the prompt ==> . User

input, other than ALL, ABC, or ROS, should be an integer

number up to three digits, which is the internal

221

identifying number of a roster, group, or committee.

When all of the numbers have been entered, the user

should enter a blank to indicate that user input is

finished.

When all user input has been entered, it will

take the machine some time to complete the actual

processing. This time will be several minutes at the

least, and may be as much as 30 to 60 minutes. At

this writing, it is impossible to tell. Do not turn

off the terminal until the machine indicates that the

processing has been completed. This indication will

be the following:

@EXIT

Usually the terminal will also beep.

222

APPENDIX H

GENERAL INFORMATION MANUAL

223

GENERAL INFORMATION AND RECOVERY MANUAL

I. INTRODUCTION

This manual is intended as a guide in using the

DEC system data base management system (DBMS) vendor

manuals. It should allow the user to use the vendor

manuals to obtain information about the data base, to

recover from system failures, and to be able to under-

stand how the DBMS data manipulation language (DML) is

used in application programs. This is not intended as

a replacement for the vendor manuals, nor will it

allow the user to make major changes in the system

without being familiar with the DEC DBMS (or getting

help from someone who is).

II. DATA MANIPULATION LANGUAGE

The DML essentially does nothing more than add

extra verbs to a host computer language. Since all the

application programs for this system were written in

COBOL, this manual will consider the DML verbs as being

additions to the COBOL language. Only the most common

situations will be considered here. A complete descrip-

tion of the usage of the DML is in the DECSYSTEM's

224

Programmer's Procedures Manual.

The verbs can be used in any COBOL sentence

(where they would make sense). The most commonly used

verbs are FIND, GET, MODIFY, STORE, INSERT, REMOVE,

DELETE, and MOVE STATUS. Most of the verbs can be

used in several different ways.

The key to most processing is the FIND verb.

All the other verbs, except STORE, make sense only

when they are used in conjunction with a FIND command.

STORE must also be used in conjunction with a FIND

command in some cases, as will be explained shortly.

The DBMS software maintains pointers to many

different CURRENT records. There is CURRENT OF RECORD,

CURRENT OF RUN-UNIT, CURRENT OF AREA, and CURRENT OF

SET. When the FIND verb (or the STORE verb) is used,

the record it finds (or stores) is automatically made

the CURRENT OF RUN-UNIT, and, unless the programmer

specifically directs otherwise, the CURRENT of record

and any sets and/or areas that the record is in.

When the other verbs are used, they act on the CURRENT

OF RUN-UNIT (with some other record, in some cases).

The FIND verb, in all its forms, does nothing

except set the CURRENT pointers. If the programmer

wishes to do anything with any of the data items of a

record, including just read them, the GET verb must be

225

used to copy the record into the user work area. GET

does not take the record out of the data base.

Once a record has been brought into the user

work area, the programmer can manipulate the record's

data items with any of the usual COBOL verbs (MOVE,

ADD, etc.). These changes will be made only in the

work area. In order to change items in the data base,

it is necessary to do the manipulations in the user

work area, and then use the MODIFY verb. It is

possible to use a record name following GET or MODIFY.

If the CURRENT OF RUN-UNIT does not agree with the

record name, the DBMS software will cause an error

status to occur. It will not GET or MODIFY any record

except the CURRENT OF RUN-UNIT.

A STORE command must be followed by one or

more record type names. When STORE is used, it creates

a new occurrence of the specified record type(s), taking

as values whatever happens to be in the appropriate

parts of the user work area. It also inserts the newly

stored record into any sets in which the specified

record type was declared an AUTOMATIC member in the

schema description. The programmer must be careful here.

In order to ensure that a member record is connected to

the correct owner record(s), the programmer must first

FIND the owner records to make them the CURRENT OF RECORD

226

for their record types.

If a record type was not declared as a MANDATORY

AUTOMATIC member of a particular set, a specific occur-

rence of the record need not be in an occurrence of the

set, i.e., the record need not be connected to any owner

record of the set. In order to put it in an occurrence

of the set, the programmer must use the INSERT verb.

Before using INSERT, the programmer must FIND the

correct owner record, and then FIND the record to be

inserted into the set.

The REMOVE verb performs the opposite function

of INSERT. It removes a record from a set in which the

record type was declared as an OPTIONAL member in the

schema. Nothing happens to the record itself, only

some of the pointers are changed or deleted. Before

using REMOVE, the programmer must FIND the record to be

removed.

DELETE removes a record from the data base. A

record must be the CURRENT OF RUN-UNIT before it can be

deleted with the DELETE verb. The programmer can specify

a record type name after the DELETE verb just in case

the CURRENT OF RUN-UNIT is the wrong record type. When

that happens an error status message will be returned,

and nothing will be deleted. If a record to be deleted

is an owner record in any sets, all the MANDATORY members

227

of the sets which are owned by the record will be

deleted with it, and in some cases, depending on how

the programmer uses the DELETE verb, the OPTIONAL

members owned by the record are also deleted.

During the processing, it is often necessary to

process a collection of records of a given type. Then

the programmer may use the FIND NEXT option, where NEXT

can be the next record of a given type in either a set

or area. What the software does is use the current

record of the set or area (regardless of type) as the

starting point from which to look for the next record

of the desired type. If the processing statements had

any FIND statements (or STORE statements) before the

FIND NEXT, the current record of the set or area may

not be where the programmer wants it to be. One way to

avoid the problem is to save the data base key of the

last record of the given type, do the processing, refind

that record directly using the data base key, and then

FIND NEXT. An example is as follows:

WORKING-STORAGE SECTION.

77 HOLD-REC PIC 9(10) COMP.

PROCEDURE DIVISION.

228

FIND NEXT ROSTER-REC RECORD OF TALL-AREA AREA.

MOVE STATUS FOR RUN-UNIT TO HOLD-REC.

FIND ROSTER-REC USING HOLD-REC.

FIND NEXT ROSTER-REC RECORD OF TALL-AREA AREA.

MOVE STATUS is the verb used to save the data

base key. HOLD-REC is just a programmer declared data

item in working storage. The FIND USING

option is a direct addressing technique, and is very

fast.

III. DATA BASE INFORMATION

The DEC system supplied utility program DBINFO

allows the user to obtain information about his data

base. There are various types of information, and all

are described in the vendor's Administrator's Procedures

Manual. The type of information which might be most

useful is one which gives a complete picture of what is

contained in any or all of the data base areas and/or sets

In this case there are two areas, NAIM-AREA and TALL-AREA.

Suppose a picture of NAIM-AREA and the set GROUP-NAME-SET

of TALL-AREA is desired. The following is an example of

how to obtain that picture:

229

@R DBINFO

/SCHEMA STEVE

/SS UNIVERSAL

/SUPERSEDE DATFI

/OPEN "TALL-AREA"

/DISPLAY DATA: "GROUP-NAME-SET"

/CLOSE "TALL-AREA"

/OPEN "NAIM-AREA"

/PAGES "NAIM-AREA"

/DISPLAY DATA

/CLOSE ALL

/AC

@

Notes:

1. @ is the machine command mode prompt.

2. R DBINFO calls the utility program.

3. /is the machine prompt for the utility program,

4. STEVE is the name of the schema, and UNIVERSAL

is the name of the subschema being used.

5. DATFI is the user defined name for the file

which will contain the eventual result.

6. The OPEN statement opens the areas in protected

retrieval mode. If they are specified that way

in the schema, a privacy key must be included.

230

7. The names of areas and sets must be included

in quotes if a hyphen is included in the name.

8. After the command DISPLAY DATA is given, there

may be a wait before the next machine prompt

appears, as the data must be written into

the DATFI file.

9. The open commands set the pages for those areas

until the first DISPLAY command is given. Then

the PAGES command must be used to reset the

pages of the data base.

10. *C appears when the user holds down the CTRL key

and presses C to indicate that the machine should

return to command mode.

11. At the conclusion, all the information will be

in the file DATFI.DBI.

V
IV. DATA BASE RESTORATION

If the system should crash for any reason during

an update run, the data base areas will be left in an

undefined state. In order to be returned to a usable state

the data base utility program DBMEND must be used to force

open the data base areas and then close them. An example

is the following:

231

@R DBMEND

/SCHEMA STEVE

/FORCEOPEN "TALL-AREA":FIXEM

/FORCEOPEN "NAIM-AREA":FIXEM

/CLOSE ALL

/AC

This utility is similar to DBINFO, but is

actually easier to use. FIXEM is the privacy keys for

the data base areas, and must be used since DBMEND

actually does change the data base.

232

Vita

The author was born on March 31, 1943 in

Springfield, Massachusetts, the son of Dr. H. Bernard

Tillman, and Mrs. Jean E. Tillman.

He graduated from Springfield Classical High

School in 1961. He received a Bachelor of Science

in Applied Mathematics from Brown University in 1965.

He received a Ph.D. in Mathematics from Brown University

in 1970.

Since 1970, he has been on the faculty of

Wilkes College. Currently he is an Associate Professor

of Mathematics and Computer Science.

233

	Lehigh University
	Lehigh Preserve
	1-1-1978

	Design and implementation of a data base management system application for the small user.
	Stephen J. Tillman
	Recommended Citation

	tmp.1451580486.pdf.d07X8

