Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1978

Design and implementation of a data base
management system application for the small user.

Stephen J. Tillman

Follow this and additional works at: http://preserve lehigh.edu/etd

b Part of the Industrial Engineering Commons

Recommended Citation

Tillman, Stephen J., "Design and implementation of a data base management system application for the small user." (1978). Theses and
Dissertations. Paper 2154.

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F2154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2154?utm_source=preserve.lehigh.edu%2Fetd%2F2154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

DESIGN AND IMPLEMENTATION OF A
DATA BASE MANAGEMENT SYSTEM APPLICATION

FOR THE SMALL USER

by

Stephen J. Tillman

A Thesis

Presented to the Graduate Committee
of Lehigh University

in Candidacy for the Degree of

Master of Science
in

Industrial Engineering

Lehigh University

1978

ProQuest Number: EP76427

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest EP76427
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M| 48106 - 1346

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in
partial fulfillment of the requirements for the degree

of Master of Science in Industrial Engineering.

7-28-78
(date)

Professor Ben L. Wechsler
Major Thesis Advisor

Professor George E. Kane
Chairman, Department of
Industrial Engineering

ii

Acknowledgments

To Dr. Ben L. Wechsler, major thesis advisor, and
one of the finest teachers it has been the

author's privilege to know and learn from,

To Dr. George C. Driscoll, minor thesis advisor,
whose cooperation made working on the case

study almost painless.

To Wilkes College, for providing the sabbatical
leave and other support necessary to complete

the work.

To Irene Cocco, for typing the manuscript.

The author wishes to express his sincere appreciation
to the above-mentioned, plus all the others who

directly or indirectly, helped make this possible.

iii

TABLE OF CONTENTS

ABSTRACT ittt it it ettt it

1. INTRODUCTION (CHAPTER 1)

1.1 General Background.....................
1.2 Statement of the Problem...............
1.3 Method of Solution.....................
1.4 Objectives............... et e

2. THE CASE STUDY (CHAPTER 2)

2.1 Case Study Environment.................
2.2 The 01d System............. T
2.3 Case Study Objectives..........cccucu..
2.4 DBMS Application Decision..............
2.5 Getting Started.......... .t
2,6 The Data Base Design.............ce....
2.7 Application ProgramsS...........cconeeuns

2.7.1 The Loading Program.............

2.7.2 The Update and Query Programs...

2.7.3 The Interface Program...........
2.8 Privacy and Security........... ...
2.8.1 Privacy........ .0ttt
2.8.2 Security........iieiiiiieinaeaan

iv

Page
3. DBMS APPLICATION GUIDELINES (CHAPTER 3)

3.1 General Considerations................. 43
3.1.1 User Participation.............. 13
3.1.2 Plan........ ..ttt 45
3.1.3 Trade-offs............. 46
3.1.4 Odds and Ends................... 416

3.2 Pre-Design Phase......... .t ieennasn 47

3.3 Design.t i i e i s 49
3.3.1 A VWorkable Design............... 49
3.3.2 The 0O0ld System..............0.. 50
3.3.3 The Loading Plan................ 51

3.4 Application Programs............cciuieus 52

3.5 Documentation and Manuals.............. 56
3.5.1 Documentation................... 56
3.5.2 General Information Manual...... 56
3.5.3 Application Program Manuals..... 58

3.6 Implementation.......... ettt e e e 59

3.7 Items for Further Study................ 60

3.8 Summary........ceiitttnttiiacter o anon 63

BIBLIOGRAPHY. i it ittt te e 66
APPENDICES
A Schema Data Description................ 68
B Data Dictionary......... ... 81

C Documentation and Flowchart for
Loading Program.ttt neeeens
D Documentation and Flowchart for
Update Program...........coveievunnnnn
E Documentation and Flowchart for
Inquiry Program.ttt nren
F Documentation and Flowchart for
Interface Program.cteueveeneen
G User Manuals.ttt ienennennan
H General Information Manual............

--

vi

Page

ABSTRACT

This thesis presents general guidelines for
the development of a data base management system
application. The guidelines are aimed toward a con-
cultant working for a small user group within a large
organization which has in-house data base management
system software., The guidelines are based upon the
author's experience in designing and implementing
the membership data base for the "Planning and Design
of Tall Buildings'" research project. The guidelines
are presented according to which phase of the develop-
ment,effort they are best suited for. The categories
are the pre-design phase, the schema design, the
application programs, documentation and manuals, and
implementation. 1In addition, there is a general
category of guidelines, which cut across all phases of
the system development.

Along with the guidelines, several areas of
future study are presented. These areas are standard
topics which arise in many data processing system
developments. Because of the pecularities of the case
study, they were either not considered, or were
considered in such a way that the case study did not

offer sufficient insight for generalizing.

1

CHAPTER 1

Introduction

1.1 General Background

As organizations grow in size and complexity,
their informational needs grow with them. 1In fact, the
growth of informational requirements is generally faster
.than the growth of the organization. As the amount of
information increases, more information is needed to
keep track of the information already accumulated and
being further accumulated. 1In addition, societal
problems, government regulations, and other outside
pressures further increase the need for information,
data processing, report generation, and so on.

The fantastic growth of computer technology has
given organizations the tools necessary to solve, or at
least alleviate, their information problem. At the same
time it has brought with it another problem--how to make
use of the tools so that '"the cure does not become worse
than the disease." Martin, in [12], says '"Already
about 20% of the U.S. gross National Product is devoted
to the collection, processing, and dissemination of

information and knowledge ..." Martin is referring to

the total handling of all information, not just computer
based information. The fact is, however, that in most
medium to large organizations, and in many small ones,
computers are the backbone of the information system.
Hardware costs, software costs, special personnel costs,
the cost of such supporting equipment as punch cards,
paper tape, magnetic tape and discs, and the costs of
maintaining the physical environment of the computer
system are just some of the costs of maintaining a
computer based information system. The share of the
information expenditures that go toward the computer is
a significant fraction of the total information expendi-
tures, and that fraction is growing.

Initially computers in business were used
largely as accounting aids. As information needs and
computer technology grew, and as the users became more
aware of the capabilities and uses to which the new
machines could be put, sophisticated applications requir-
ing complex software and large specially structured data
files came into being. At first individual applications
were treated as though they were largely independent of
one another. Each application had its own programs and
data files even though there was often a large amount of
overlap in both input and output. This situation inevit-

ably led to problems of redundancy, inconsistency, excess

storage and processing costs, expensive time delays, and
in general a huge maintenance problem. Some organiza-
tions were finding that more than 80% of an éxponen-
tially increasing data processing budget was going
toward maintaining an increasingly inadequate, and
massive, system, and furthermore the maintenance percent-
age was on the increase. (See [12], p. 46) The sheer
size and disorganization of the data processing system
made new programming development extremely difficult and
costly. In those cases where a new application, with
its programs and data files, was successfully developed,
the global problem was found to be even worse than
before. The new programs and files added to the already
overburdened maintenance facilities of the organization.
More than one organization folded, at least partially,
because it could not solve its information problem.

Some sort of a systematic approach has to be
taken to make optimal (or as nearly optimal as possible)
use of an organization's informational, and in particular
data processing, resources. An organization does not
want to limit growth, but the growth should be controlled.
Standards have to be set and maintained. One method of
maintaining a meaningful set of standards is to build
applications around a well designed organizational data-

base contained within a well designed organization wide

information system. Burch and Strater in [4) give an
overview of the possible designs of general information
systems, and the use of the computer as a major part of
the systems. The technology of the 70's has increasingly
led toward the use of on-line computer systems, and the
data base management systems. Yourdon, in [15]), dis-
cusses the design of on-line systems in general,
including a brief discussion of data base mandgement
systems. Martin gives a fairly thorough overview of data
base management systems in [12] , and goes into details of
design considerations and related matters in [11].
Theoretically a data base management system
(DBMS) provides one large central data bank. All data
for all applications is present in a standard format.
The data that a given application needs is easily acces-
sible, but all other data is protected from unauthorized
access. Changes in data organization and content do not
affect any application program, and application programs
may be changed without requiring the data base to be
restructured. In practice, unfortunately, this has not
come to pass. What has happened, however, is the develop-
ment of several smaller data bases, designed around
specific functional needs and/or common data usage. Each
of the smaller data bases serves, in general, several

applications each,

The technology necessary for a DBMS is not
trivial. Generally organizations which try to design
their own DBMS have great difficulties (see case study C
p. 388 in Kroenke [10]) or at the very least excess
costs. Therefore when an organization makes the decision
to implement a DBMS, it usually decides to take advantage
of one of the commercial software packages available,
either from a computer vendor or from an independent
company (see [6] for an independent comparison of several
available packages). The packages vary in complexity and
cost. An example of a successful, but relatively simple
and inexpensive system is TOTAL (see [5]), which is
marketed by Cincom Systems, Inc. One of the more com-
plex successful systems is IMS (see [9]), marketed by IBM,
but available on some other hardware also. A general
guideline for comparison is the CODASYL data base task
group (DBTG) system (see [14]), which was designed as a
standard for a general purpose DBMS. Many information
systems specialists (see [12], p. 148) debate the effec-
tiveness of using the CODASYL DBTG system as a standard,
but at the very least it does provide a common benchmark
against which other systems can be measured.

Once an organization has made the decision to
implement a DBMS, there remains the problem of getting the

users to at least consider it in performing their

6

applications, The implementation decision will have

been made, presumably, with several specific applica-
tions in mind. The users involved with those applications
would probably have little choice about whether or not to
make use of the company DBMS, and in any case they
probably would want to use it. Within most organiza-
tions, however, there are many diverse and independent
computer abplications. The users connected with appli-
cations that are largely independent of the initial DBMS
applications could choose to avoid the in-house DBMS, at
least for a while. Granted that a DBMS is not always

the optimal choice, one has to at least consider a DBMS
application before one is in a position to make an
intelligent decision.

Even if it is assumed that the design personnel
of an organization's EDP department are completely
familiar with and know how to make best use of a DBMS
(not always a valid assumption), the users are generally
unsophisticated in terms of the capabilities and ease of
applicability of a DBMS. While they may be willing to
believe (because someone told them so) that the organi-
zation as a whole is better off with a DBMS, they are
often not able to see how it can be applied in their own
case. In many cases there is also, quite understandably,

the fear of the unknown. The users have to be taught not

7

only that a DBMS application can be of use to them, but
that the application can be carried through without unduc
strain and mystification, and they will be plcased with

the eventual results.

1.2 Statement 9£ the Problem

The assumption here is that an organizational
decision to install a DBMS has already been made, and
that the installation has been all, or nearly all, com-
pleted. In that context, consider gye case of a small
user group within a large organization that has an in-
house DBMS. Assume the user group has need of a data
base reorganization for its own activities, and would
like to take advantage of the organization's DBMS, or at
least to consider the possibility of a DBMS application.
The purpose of this thesis is to present a mechanism by
which a consultant can aid the unsophisticated user (in
terms of DBMS knowledge) in considering and implementing
a DBMS application when it is called for. The idea is
that the user should be on tép of and participate in the
entire development effort from inception to implementation,
and be very comfortable with the end result. 1In the fore-
going context, the problem to be considered is restricted
to that mentioned above. The more fundamental problem

of how an organization should structure its data processing

resources is beyond the scope of this thesis, and has,
in any case, been treated fairly extensively in the

literature (see references cited in 1.1).

1.3 Method of Solution

While it is likely that there is no fixed "all
purpose' solution to the problem stated in 1.2, it is
also likely that there are some underlying principles
involved which would be valid for the vast majority of
cases of the type considered here. Therefore the approach
taken in this thesis is to present a case study in some
detail. Hopefully, the case study will be '"typical"
enough of such cases to bring out those underlying prin-
ciples.

To fulfill the purpose of this thesis the reorga-
nization of the membership data base of the "Planning and
Design of Tall Buildings" research project will be used
as a case study. As will be seen in Chapter II, it is
a relatively simple case, but that means that the peculi-
arities of the case study itself are less likely to
obscure the general guidelines involved. It is realized
that one case study cannot possibly provide a general
guideline that will work in every case. Also, as will be
shown later, there are some areas which were not of great

concern in this case study, but which can be in other

9

cases. This thesis is intended to be one step in the

overall path toward a general solution.

1.4 Objectives

The objective of this thesis is to provide a
guideline which can be used by a small user in the

environment mentioned in section 1.2.

10

CHAPTER 2

The Case Study

2.1 Case Study Environment

The-;ase study took place at Lehigh University.
The computer center at Lehigh operates in an '"open shop"
environment, rather than the more typical ''closed shop"
environment found in most organizations. The main
difference in this particular case is that the consul-
tant (in this case the author) is external to the
computer center, rather than internal to it. The hard-
ware is the Digital Equipment Corporation's DEC-20
system. The DBMS software package is DEC's in-house
DBMS. This package is appropriate for a case study since
it is modeled on, and is very close to, the CODASYL DBTG
system.

"Planning and Design of Tall Buildings" is one of
several projects under way at the Fritz Engineering Labo-
ratory at Lehigh University. The Fritz Engineering Labo-
ratory is in turn connected with the Civil Engineering
Department at Lehigh. The Tall Buildings Project is a
large international interdisciplinary research project,

centered at Lehigh, and under the direction of

11

Dr. Lynn S. Beedle. Dr. Beedle, a professor of Civil
Engineering at Lehigh, is the director of Fritz Engineer-
ing Laboratory. Dr. George C. Driscoll, also a professor
of Civil Engineering at Lehigh, is an associate director
of Fritz Engineering Laboratory. Among other things,

Dr. Driscoll is responsible for heading the computer
systems and operations phase of the Tall Buildings Pro-
Ject.

The Council on Tall Buildings and Urban Habitat
was established to study all aspects of the planning,
design, construction, and operation of tall buildings.
One of its major tasks is to come out with a comprehen-
sive MONOGRAPH on the subject. (For a more detailed over-
view of the Tall Buildings project and its various phases
and operations, see Beedle [1]) and [2], and Brinker [3).)
Thousands of people all over the world are connected
with the project in scores of different activities.
Needless to say, coordinating their efforts is a major
undertaking, and would be extremely difficult without a
good computerized membership data base.

Basically, the membership data base is supposed
to aid in keeping track of who is doing what, where, and
when. In addition, the data base 1s supposed to provide
input for a series of application programs which provide

lists of certain project members, in some cases with

12

addresses, by project activity and/or by organization
and/or by geographic location. One of the programs
prints address labels for mailing material to selected
collections of project members.

With the installation of the DEC-20 system, along
with its DBMS software package, at Lehigh in the fall of
1977, Dr. Driscoll saw a way of restructuring the member-
ship data base to avoid then curfent problems with
updating, inconsistent data, redundancy, and in general
the usual problems an organization has which makes it
turn to a DBMS system. (A brief description of the old
system is contained in 2.2, For a fuller description,
see Brinker [3], appendix F.) Therefore, after consul-
tation with Dr. Ben L. Wechsler of the Industrial Engi-
neering Department at Lehigh, Dr. Driscoll and Dr. Beedle
offered the author the position of research assistant to
work with Dr. Driscoll in the design and implementation

of the DBMS application which makes up this case study.

2.2 The 01ld System

When an individual member of the Tall Buildings
Project is engaged in a specific activity, the name of
the member is placed on the list of those involved with
that particular activity. The major lists, for data

base purposes, are referred to as rosters. Many of the

13

rosters are subdivided into sublists, referred to as
committees. A few of the rosters are divided into sub-
collections, referred to as groups, and the groups are
further subdivided into committees. To distinguish be-
tween the two types of committees, when that is necessary,
they will be referred to as roster committees and group
committees. This is a vast oversimplification of the
organizational structure of the Tall Buildings Project,
but for data base purposes it will suffice.

The old data base was kept on tape as a large
sequential file. All processing and applications were
performed using Lehigh's Control Data Corporation model
6400 computer system. The exact details of the file
organization and how the application programs were run
are in [3]. A brief description will be included here
for convenience. Each physical record in the tape file
was an 80 character card image record. Basically the
file can be thought of as being in four parts, separated
by specific records used as delimiters.

The first part was a list of all the rosters,
groups, and committees. If a roster was broken up into
groups, the roster's record was followed by the record of
one of the groups in the roster, which was followed by
the records of all the group committees within that

group. This pattern was repeated until all the groups

14

within the roster had been listed. If a roster was

broken up into roster committees, the roster's record was
followed by all the committee records of the committees

within the roster. For example, suppose there were five

rosters. Suppose rosters 1 and 4 had neither groups nor
committees, rosters 2 and 5 had 2 and 4 committees respec-
tively, and roster 3 had 3 groups with 1, 2, and 3 com-
mittees respectively. Then a logical picture of the

organization of the first part of the file would be as

shown in figure 2-1.

The second part of the file contained the actual

membership data. Four of the 80 character records were
used for each member, The first record contained the
first line of the member's mailing address (which would
be the title and name in most cases), followed by the
member's last name, title, and initials (if the member
was a person, as opposed to an organization, in which

case just the name of the organization would be included).
The second record contained the second line of the mail-
ing address, followed by the member's organization. The
third line contained the third line of the mailing address,
followed by a code giving the rosters, groups, and/or

committees the member was currently on. The fourth record

15

roster 1 data

roster 2 data

committee 2-1 data

committee 2-2 data

roster 3 data

group 3-1
committee
group 3-2
committee
committee
group 3-3
committee
committee

committee

data
3-1-
data
3-2-
3-2-
data

3-3-

3-3-

3-3-

roster 4 data

roster 5 data

committee
committee
committee

committee

5-1
5-2
5-3

5-4

1 data

1 data

2 data

1 data
2 data

3 data

data
data
data

data

figure 2-1

16

contained the fourth line of the mailing address,
followed by the member's city and state or country.

The third part of the file repeated the listing
of the rosters, groups, and committees in the same order
as in the first part. In this case each such entity was
followed by a list of the members connected with the
entity. Every time a member was connected with a par-
ticular entity, the first record of the member's four
record data description (described in the previous
paragraph) would be duplicated after the record of the
entity.

The fourth part of the file contained a list of
all the countries that members of the project lived in.
Each record contained the name of a country, and its
abbreviation.

Each member of the project was on at least one
roster, group, or committee, and some were on close to
twenty. A change to any single record in the tape file
required a separate user input. Thus if a member's
name were changed, several different records had to be
separately updated to reflect a change in one item. If
an organization had twenty project members working for
it, the name of that organization was repcated at least
twenty times. If the organization changed its name,

all those records had to be separately updated. The

17

same repetition held with cities, states, and countries.

As 1s the case with tape files, the only way to
update the file was to recopy the entire file, changing
those items that required change along the way. Updat-
ing the file was both difficult and prone to errors
that were difficult to correct. As data for file updates
accumulated, it was punched on cards and saved. About
every three months the entire file was updated using a
system software utility program called UPDATE.

The application programs were generally used to
create lists of selected member names, sometimes with
addresses, and/or to print mailing address labels for
selected subsets of the membership. The selected sub-
sets were usually the members associated with particu-
lar rosters, groups, and/or committees, not necessarily
the same ones every time. The lists were to be sorted
alphabetically by name and/or by country, city, and
name and/or by organization and name. (States in the
United States were treated as countries for this pur-
pose.) If a city, state, country, or organization was
entered incorrectly during an update run, the desired
lists in subsequent application runs would be messed up.
When an application program was to be run, UPDATE was
used, along with the accumulated corrections (which were

not actually entered into the data base unless the run

18

coincided with a quarterly file re-creation), to create
a temporary disc file consisting of a copy of the rele-
vant records of the data base., After the application
was run, the temporary file was discarded.

There were no provisions for querying the data
base if information was required about a few individual
members. There were also no provisions for keeping such
occasionally needed data as telephone numbers and length
of time with the project. In general, the old data base
was cumbersome to use at best, did not take advantage of
advanced computer technology, and as inconsistencies

developed, was in danger of becoming a liability.

2.3 Case Study Objectives

Most of the problems with the old system had to
do with faulty and delayed updating. Also the file
organization made new application development difficult,
if not impossible. The primary objective in this case
was to have a file organization that makes updating fast
and easy, and that does away with internal inconsisten-
cies and redundancies. If possible, the users wanted
to have on-line updating facilities. As a spin-off of
the on-line updating facilities, it became possible to
add the additional objective of on-line querying, at

almost no charge. This was possible because querying

19

would impose no additional data structure constraints,
and could be accomplished with a relatively simple
application program, as will be seen in 2.7. Another
important objective was to allow the same "batch type"
applications as were run under the old system. In fact,
if possible, the users wanted to use versions of the
same application programs. This latter point was be-
cause it will be the users' responsibility to maintain
the system, and maintenance would be easier if the users
were familiar with the application programs. This will be
discussed more fully in 2.7,

On a more long range basis, an objective was to
provide a data base design which could be easily expanded
to include other projects in Fritz Lab. Another objective
along the same lines was to have a design which could be
emulated for other uses, e.g. an administrative data base

at Fritz Lab,.

2.4 DBMS Application Decision

It should be clear from the objectives of the case
Study that the file organization of the data base should
be one that allows random access. A given member of the
project is on a membership list, a geographical list, an
organizational list, and at least one and perhaps as many

as twenty roster, committee, and/or group lists. These

20

factors plus the desired on-iine features made the choice
of a DBMS application a natural one. Most DBMS software
is designed to be compatible with on-line applications.
Such software was available. The software would take
care of the mechanics of setting up the necessary chains
to correspond to all the desired lists, The random
access feature of the DBMS was better than any of the
available alternatives on the current Lehigh hardware
configurations. Finally, a DBMS design makes file main-
tenance easier from the users' point of view. Frequent
file reorganizations are not nearly as likely to occur
as with indexed sequential or straight random access
methods. This last consideration is especially important
in cases where the users are not primarily data process-
ing oriented, but are still responsible for file organi-
zation and maintenance.

There were some drawbacks to the decision to go
DBMS. First there is the obvious one that the data had
to be converted from use on the CDC 6400 to use by the
DEC-20. The two systems are almost totally incompatible,
This caused more problems than was originally apparent.
The CDC used only seven-track tape, so the original data
was naturally stored on that medium. The DEC had only
one tape drive, and it took nine-track tape. While the

computer center claimed they were ready, willing, and able

21

to help users convert, their cooperation in this particu-
lar endeavor was difficult to obtain and its lack
unnecessarily delayed completion of the system conversion.
Another drawback to going DBMS was that the appli-
cations were largely batch processing oriented, and
required use of a high speed line printer. The DEC-20
configuration had only one 240 line-per-mifute printe%.
Eventually some compromises were called for. The project
leaders agreed to use the printer for only the first copy
of lists and mailing labels, and use copying facilities
for others,
A final problem was that the DBMS software was
new and still largely experimental. As a consequence,
it was not completely debugged. This led to some problems
which were overcome by some minor design changes and a

different approach toward the application programs.

2.5 Getting Started

Throughout the course of the case study, the users,
represented for the most part by Dr. Driscoll, and the
consultant worked closely and harmoniously together. This
cannot be overemphasized. While in general user involve-
ment is extremely important in the development of an infor-
mation system, in this type of situation it is even more

crucial (if that is possible). Not only will the users

22

have to use the system, they will have primary responsi-
bility for maintaining it. Also, in this case, the batch
application programs are primarily the users'., There-
fore, Dr. Driscoll was actively involved in the technical
end of the development.

After the initial procedures of engaging the
consultant, defining the general scope of the problem,
and deciding to go DBMS were completed, Dr. Driscoll and
the consultant jointly came up with two documents for
guidance. The first was a general schedule (see figure
2-2). No timetables were set, as the duration of each
activity was not easily determined in advance. Estimates
would have been useless, as neither Dr. Driscoll nor the
consultant were able to devote full time, or even a
steady percentage of time, to the case. The purposes of
the general schedule were to inform everyone involved in
the development effort of the general progress made, and
to avoid going off on tangents,

The second document was a written description of
the data base functions (see figure 2-3). The purpose
for this was to have the specific goals in mind and
clearly spelled out while doing the work. Both the
users and the consultant were aware that this was a
working paper only, subject to change if situations

warranted (which they did). Both documents were the

23

General Plan for Tall Building Project Data Base

II.
III.

Iv.

VI.
VII.
VIII.

IX.

XI.

XII.

Get functions of data base defined by user
Design data base

Review design with user, make changes as necessary
Get data base schema up on machine

Load test data

Review application needs with user

Write and test application programs

Write documentation for application programs
Write user manuals, review use with user
Load real data

Retest application programs

If time permits, add additional features as

requested

figure 2-2

24

Data Base Functions

I. For each member, the data base will contain his

last name, first name (or initial), middle name

(or initial), mailing address, telephone number,

starting and ending date with the project, geo-

graphical data, organizational data, and roster,

group, and/or committee affiliations, together

with special responsibility where applicable.

II. The major use will be to print names and/or

addresses and/or address labels in any of the

following orders:

A,

B
C.
D

E.

F.

Alphabetically

Chronologically

By country and city, alphabetically

By roster alphabetically., In this case

if a name is on several rosters, the user
will have a choice as to whether or not
more than one address label will be printed
By organization, alphabetically

By roster by starting date in the project

III. Updates to the data base can be made on-line as

they occur. Queries of the data base can be made

on-line.

figure 2-3

25

final result of several meetings of give and take.

2.6 The Data Base Design

The logical data base design, or schema, is shown
in figure 2-4., The actual data description is in appen-
dix A. It is written in the DEC Data Description Lan-
guage (DDL) (see [7]). The data base dictionary defining
the terms used in the design is in appendix B. The size
of the data base was worked out by the consultant after
consultation with Dr. Driscoll about the number of
records of each type. Space was left for growth within
each data base area; and pages were left for expansion of
each data base area if necessary.

Naturally the design shown in figure 2-4 was not
the original one. Some of the changes that were made,
along with the reasons for those changes are as follows:

a. Neither groups nor group committees were con-
sidered in the original design. They were overlooked
when the organizational structure of the project was first
described to the consultant. When they, along with their
member lists, were added, several new record types and
sets had to be added, but the basic design structure
remained intact.

b. At first member names were not included in

record types NAME-ROSTER-REC, NAME-R-COMM-REC, NAME-GROUP-

26

b-X

INnIg

Jiviy | RAuina)]

AVInne)-3s9ds

23X Ay Inn

- JIVTS
295-AULNAOITALID

Musyriny 90
0-TTV1 VWIS oreereress fo:
day-KiT5
LIS-FWY-NYoY k.nv.-.f}%tu
e @ - s .l,ll«k'!lyxll-
T are] I¢ %
Fivo Fve T-Mz,.\:ﬁ EE T 9414 Py N t1914) TyH-11¥7,
écmL - 10715 | He --EN,S o4l |=aNBIIS WTYN -
T ? F7id= FNVN C
FL,| YN ..a..
Y (]
LIS-byW0I-Y-IN¥N SNYN TH3d53Y IWYN trods Bl W
-WhD) -9 -Wh0) -9 —dMII Y| o gnoNd
EEN7T2T 28Y=bA%)-3 -3 29 TREVI-INN | g5 y3us09-dWYN
WA sy i i L 35-Iw t»ﬁEZS-@ . 435-INYN IOy
29-NRD)= - 47dIND? . TVLFQ | - yri3a LNIOT ! FIAd
~. “HWW0I=9 = NII=-D 4y D). 9 | -WW0)- T .h “WR3Y -) PON-NNOI-I EI Y ﬁ TSIy
T~ v YIS =7ASy Y —SIL0N . ~X 3130y

~—

4 IS~ W0r-groy 9

I

INFOT

LIS IV = (s 0y C-7VL30 | . yps30
d 20°94200- 9| ~ Jnod 9 | ~gdnI¥ Y »nuomi FIhL-D| WNN-D
i 23 -dn0y9 .
LJLND | e VLIO| Vs I0 | wNIFOR FdAd _ 295 groy D - 33150
WDV | =iy | W)=Y | - Wied =¥ | - M)~y FOMRINO)-Y
3IF2LIWWNOI=Y \
L35~ W0 -3 T 150y \
v
AN3a02
4N 1r0= S 00| - 1YL IQ-F| 1-1VL3A-8] _y3G 50y ALY Uﬂzﬂlo.m

v~ ¥ IR~ TS

<r\.¢m§ou

23¥-¥Jdicoy

REC, and NAME-G-COMM-REC. It was originally felt that
owner pointers to NAME-FILE would be enough, but later
the names were added to ease and speed up processing.
This is an example of processing speed versus redundancy
trade-off, leading to a case of controlled redundancy.
Although member names are duplicated, sometimes many
times, the application update program is written so that
a change in name need only be entered once. Then the
name change will be made on the member's personal data
record and all appropriate roster, group and committee
lists in a manner that is transparent to the user.

¢c. The NAME-FILE record type was originally
ordered two ways--alphabetically and chronologically,.
Also the ORGANIZATION-REC and STATE-COUNTRY-REC record
types were ordered alphabetically. All these orderings,
except the alphabetical ordering of NAME-FILE, were
eliminated. The main reason was that on test data the
system software had a great deal of trouble with system
sets. (Often the software would insert a record into the
data base correctly, and then would crash while trying to
make the appropriate system set linkages. Some of the
linkages would get made, but not all. The selection of
which linkages would be fouled up, if any were, seemed to
be random. The problem went away when the data base

design did away with most of the system sets.) Also, a

28

change in how the batch application programs would be
run, which will be described later, made all but the
alphabetical ordering of NAME-FILE largely unnecessary.

The software problem was described to the compu-
ter center, but no explanation was ever received. Two
communications from the center were received. The first
said that the problem was being looked into, and may
have to be sent to DEC. The second said that the data
base (one of the test versions) had been destroyed, and
to let them know if the problem reoccurred.

d. Owner pointers were not included in all sets
at first, but they were later added to ease processing.

e. The data item FOURTH-LINE was not originally
‘considered necessary, as the consultant felt it could be
generated from the city and state or country. Here is an
example of the importance of user participation. Dr.
Driscoll was able to point out that the fourth line on an
address label is restricted in length, and that the actual
fourth line might be in a different form than city and
state or country. Also it would be easier for the user
during an update run to be able to enter the entire ad-
dress, and not worry about which part to enter and which
part not to enter. In this case the major trade-off was
user convenience versus redundancy.

f. The internal reference numbers of the rosters,

29

groups, and committees, i.e. the data items ROS-NUM, G-
NUM, R-COMM-NUM, and G-COMM-NUM, were added after the
original design was made. They were added because the
users wanted to have a simple unique way of identifying
each such entity. Then later on, the output codes, {i.e,.
the data items ROS-OUTPUT, G-OUTPUT, R-COMM-OUTPUT, and
G-COMM-OUTPUT, were added because they could supply a
mnemonic code on printed outputs to identify the rosters,

groups, and committees,

2.7 Application Programs

There are actually two types of application pro-
grams. There are the users' application programs to han-
dle the users batch programming needs, and the data base
programs to handle communication with the data base. The
first type can be created to use the data base directly
for input, but for reasons which will be discussed in
section 2.7.3, that option was not chosen in this case.
Therefore, the users' batch application programs were not
actually part of the consultant's work, and so will not
be discussed here, except as they relate to the DBMS
application.

There were four major DBMS application programs
written by the consultant--a loading program to load the

initial data into the data base, an update program to

30

allow on-line updates of the data base, a query program
to allow on-line queries of the data base, and an inter-
face program to allow the data base to interface with
the users' batch application programs. All of these
programs were written in COBOL, using the DEC's Data
Management Language (DML) verbs, which are COBOL compat-
ible (see (8]).

2.7.1 The Loading Program

The flowchart and written documentation of the
loading program are contained in appendix C. Of the four
programs, the loading program was the only one written
for limited use. It is also the only one that requires
no interactive input. Thus no user manual was written
for use with this program. On the other hand, the load-
ing program was the only one that required direct user
participation in the logical design. The users had to
supply the input files for the program. Therefore, the
logical flow of the program depended upon what the users
gave the consultant to work with.

The input files came from the old data file, which
had to be converted from seven track tape to nine track
tape. As mentioned in 2.4, there were some problems in
getting the computer center to get moving on the conver-

sion. Consideration was even given to using the update

31

program to load the data base, though that would have
been excruciatingly slow. Fortunately this was not
necessary as the computer center was able to provide the
necessary data files.

The raw data, however, was not what Dr. Driscoll
wanted the loading program to use., The data was incom-
plete. Dr. Driscoll wanted to edit the data to correct
some obvious mistakes, and to insert such items as the
internal reference numbers and the output codes for the
rosters, groups, and committees. They were crucial for
the successful running of both the batch and the data
base application programs. He also wanted to insert an
indicator to differentiate people members from organiza-
tional members. Other items which were not in the origi-
nal data file, such as the first and middle names of
person members, the phone numbers of the members, and the
starting dates and ending dates of members could be added
piecemeal using the update program.

Using a test data file similar in format to the
real one, Dr. Driscoll created several different types of
new data files with programs that he wrote. Some of the
new files were the final product of a series of programs,.
After several hours of discussion, which took place over
a period of a few weeks, Dr. Driscoll and the consultant

agreed that the data for loading the data base would be on

32

two files that were created by Dr. Driscoll from the
original data file.

The first file was a list of the rosters, groups,
and committees in the same order as in part 1 of the
original file (see figure 2-1). In addition to the des-
criptive data, each record in the file contained the
internal reference number and the output code of the par-
ticular roster, group or committee that the record was
for.

The second file was a list of the project member-
ship. For a person member, the record contained the
member's last name and first and middle initials. For an
organizational member, the record contained the entire
name (up to a certain number of characters). In addition,
each record contained a member's four line mailing address,
the member's city and state or country (this was separate
from the mailing address), the member's organization, plus
some other data from the old file not used by the loading
program or the data base. The above data came from the
old file. Also in each record was a character to indicate
whether the member was a person or an organization, and an
item giving the total number of rosters, groups, and com-
mittees that the member was on, togethef with a list (by
internal reference number) of the appropriate entities

with the member's responsibility on each such entity.

33

These last items were inserted by Dr. Driscoll's pro-

grams .

2.7.2 The Update and Query Programs

The flowchart and written documentation for the
update program are contained in appendix D, and for the
query program in appendix E. User manuals for the two
programs are in appendix G. These two programs had the
least user involvement in their design and functions.
Basically, the users had to indicate satisfaction, or
lack thereof, in the end results. There was little need
for discussion about what the programs had to do, as their
functions were obvious. In both cases the users' primary
responsibility was to indicate whether or not they could
use the programs satisfactorily, and whether there were
any areas requiring improvement,

More time was spent on the update program than any
other single feature of the consultant's work. For sev-
eral weeks nothing else was done, and after that a good
percentage of the consultant's time was spent on testing,
debugging, and improving the program. The program was
fairly long (about 1400 lines of code), highly interactive,
and had several different logical branches that it could
take. Care had to be taken to protect the data base from

involuntary improper input. (There is little hope of

34

protecting the data base from voluhtary improper 1input {f
someone with that in mind gets as far as using the update
program. In that case the idea is to prevent such people
from getting access to the program in the first place by
taking proper security precautions.) Since the eventual
users of the program would be largely clerical types,
there was need to make the program as '"“idiot proof' as
possible., (This is not intended as a slur on people with
clerical jobs. The fact is that Murphy's Law seems to
hold rigidly with all computer systems. [Loosely stated,
Murphy's Law says, '"Whatever can go wrong, will."] Any-
one who is not used to working with a computer can quickly
find themselves in trouble through no fault of their own.
The system designer must try to anticipate potential
trouble spots as much as possible.)

During the time that the consultant worked on the
update program, Dr. Driscoll was kept informed of the pro-
gress, sometimes on a daily basis. He was encouraged to
try the various versions of the programs, and to think of
as many possible variations as he could of the possible
user input. In this way the users were kept actively in-
volved in, and could contribute to, a large and integral
part of a system which would eventually be their sole
responsibility.

Some of the specific features of the update program

35

that were put in to aid the eventual users were as

follows:

a. All user input is preceded by a request for
the input, often with an explanation of the type of in-
put expected. Then the prompt ==> is displayed to

indicate that the user should begin entering data.
b. User input is entered one line at a time, and

need not be left justified. 1In cases where user input
must be of a specific type or value, the user is given
three chances to make a correct entry, with successively

stronger messages displayed after each incorrect entry.

If proper input is not made after three chances, the
program branches to its exit routine and stops executing.

¢c. When the user enters a member's name for the
purpose of either changing or deleting the member's
record, the computer finds the record, displays the name
and address, and asks the user to verify that the correct
member record has been found. This provides protection
in case e;ther the wrong name is input, or there are
several members with the same name., In the latter case,
the computer will look for another record with the same
member name,

d. There are a limited number of geographic
entities. Should the user enter a geographic location
not listed in the data base (during an addition trans-

action), the computer will request that the location be

36

reentered, thus providing protection against a possible
spelling mistake in the original entry.

e. As each transaction is completed, an entry 1is
made in a data file which the user can check when all
transactions have been completed for a particular run.
There are actually three separate data files created,
one each for additions, deletions, and modifications.

By contrast to the update program, the query
program was simple to write, debug, and implement. As
the update program was written first, some of the fea-
tures of the update program could be adopted by the
query program, and some of the trouble spots could be
avoided. The main reasons the query program was so much
easier, however, were that it is shorter, logically
simpler, and accesses the data base in retrieval mode
only, so that one does not have to worry about protecting
the data base.

The query program uses no input files and creates
no output files. All I/0O is from a terminal, The user
inputs the name of the member whose record is to be
queried. The computer then acts in the same manner as
described in part c above. Then the user is asked speci-
fically about viewing every item in the member's record.

After testing the query program, Dr. Driscoll

requested that in listing the rosters, groups, and

37

committees that a particular member belongs to, the
reference number be included along with the description.

Other than that, he accepted the program as written.

2.7.3 The Interface Program

As mentioned at the beginning of section 2.7, it
would have been possible to write application programs
which used the data base directly as their input, and
which performed the batch processing required by the
users. In fact, the consultant had started work in this
area when the users decided not to go this way. The users
were primarily motivated by ease of maintenance, and sec-
ondarily motivated by speed of the project. The batch
application programs were already written to work with the
old data file on the CDC computer. It would be relatively
easy to adapt them to work on the DEC-20, and to use as
input a file similar in format (but improved in content)
to part of the old data file. It would also be faster and
easier for the consultant to write an interface program to
create such a file, than to write, debug, and test pro-
grams to perform the batch processing directly from the
data base.

One can make a strong case for the method selected
by the users in absolute terms. That is, it is quite

possible that the users' decision was the correct one even

38

if processing efficiency was the sole criterion on which
the decision was based. DBMS applications are designed
to improve overall system efficiency, not specific pro-
grams. Application programs which use a DBMS tend to be
I1/0 bound, hence slow in processing. In this case the
users' requirements were for various types of sorted
lists, and rarely involved the entire data base. The
lists were generally for the members on selected rosters,
groups, and/or committees. If application programs were
written to use the data base directly as input, the same
records would have to be accessed many times in various
different sequences. To get a complete member record,
several chains have to be traversed. The programs would
have to check to make sure the member was on one of the
selected rosters, groups, or committees. The data base
design would have to be more complicated (see 2.6 part c).
The interface program allows the user to input
the reference numbers of the rosters, groups, and/or com-
mittees to be used for a particular batch run. Then the
program would make a temporary file of only that particu-
lar part of the data base needed. The batch application
programs would then use this file as their input. As
the creation of the temporary file did not require keep-
ing track of as many things as would an application pro-

gram that used the data base directly, the interface

39

program was easier to write and debug. From a users'
point of view, the only requirement (other than having
the necessary information) is to have the output in the
proper format.

The flowchart and written documentation for the
interface program are in appendix F, The user's manual
is in appendix G. The program logic is actually fairly
simple, and there was little trouble with either writing
or debugging. The program gives the user the ability to
have selected rosters, groups, and/or committees used in
making a temporary file. It also allows the user three
other options: (i) by entering ALL , the user will
cause the program to use all rosters (hence all groups
and committees also) in making the temporary file;

(ii) by entering ABC , the user will cause the program

to create a temporary file consisting of an alphabetical
list of all the project members, along with their asso-
ciated data; (iii) by entering ROS , the user will cause
the program to create a temporary file consisting of a
list of the rosters, groups, and committees similar to
that in figure 2-1, This last provision was added later,
at the request of the user, primarily to provide a vehicle

to see how the internal reference numbers are matched with

the appropriate rosters, groups, and committees.

40

2.8 Privacy and Security

Privacy and security did not play a major role
in the development of this system. The information
contained in the data base is neither financial nor
particularly sensitive. Therefore the requirements for
secure and private records are not as stringent as they

would be had this not been the case.

2.8.1 Privacy

The operating system provides some protection
from invasion of privacy by requiring a password to get
at the project's computer directory. This feature is
under the control of the computing center. Unauthorized
programs cannot access the data base unless they contain
the privacy keys of the subschema and the data base areas.
These are under the control of the users, who may change
them at will. Access to the authorized application pro-

grams is also under the control of the users.

2.8.2 Security

The consultant recommended that the users main-
tain a backup copy of the data base on tape, physically
removed from the computer center. Therefore in the
advent of physical loss of records, for whatever reason,

the entire data base would not have to be recreated from

41

scratch. The users would have to request the computer
center to make such a backup. The users have the respon-
sibility of seeing to it that the backup copy is updated
periodically.

Once the data base is up, only the update program
actually modifies it. This program can be used only
interactively, and in exclusive update mode (this update
mode was the option selected by the users). Thus if the
system should crash, at most one transaction, the current
one, would be affected. Therefore there was no need to
have the overhead of a transaction log to maintain data
base integrity. Should a system crash occur, no further
transactions would be allowed to take place. The utility
software package DBMEND (see [7], and appendix H) can be
used to restore the system to usable form, and the users
can then take whatever steps are necessary to restore
individual records. If they wish, they can use the utility
software package DBINFO (see [7), and appendix H) to see

precisely what is in the data base, including linkages.

42

CHAPTER 3

DBMS Application Guidelines

3.1 General Considerations

This chapter is aimed both at a consultant and
a user in the environment described in section 1.3. It
is written mainly to the consultant in order to provide
a series of checkpoints in the development process. The

user should also be aware of the checkpoints.

3.1.1 User Participation

The general organization of this chapter is to
present the guidelines by category, where that is pos-
sible. There are, however, several points which cut
across all the categories in the development process.
The first and most important of these is: never work in
a vacuum. Be sure the users are involved in every stage
of the work, and are kept informed of the consultant's
progress and problems on individual aspects of the work.
While it is never a good idea to develop an information
system without the user participating at least as an
observer, in this type of situation it would be
disastrous.

43

In a major systems development effort, with a
large project team working, there is some hope of con-
structing a viable system with only minimal user involve-
ment, A large group of professionals working together
have the opportunity of "bouncing ideas around'" until a
good one surfaces. Potential trouble spots, solutions,
user requirements, etc., can be anticipated, not by any
one individual, but as a culmination of group discussions,
The end result may not be precisely what the users wanted,
but there is a reasonable possibility that it will be
something they can live with,

In the situation considered here, there is no
group. There are no team members to point out incorrect
assumptions of user needs and desires, which are bound
to occur. Only the users can say whether a proposed
solution to a particular problem is viable. While there
may be technical specialists the consultant can ask
about specific details (as was the case in this case
study), the users are the only ones with whom the consul-
tant can discuss the problem as a whole. These discus-
sions should be continual, as they will often uncover
small but important details that were overlooked before.
It has been this author's experience that, in general,
the very fact of discussing a problem often seems to make

the solution obvious. Finally, the consultant should not

44

lose contact with the users while involved with a speci-
fic task, e.g., writing a particular program, as a work-
ing relationship once lost may be difficult to regain.
There are positive reasons as well for keeping
the users up to date on both the total picture and the
individual tasks. Users can, and do, come up with
valuable contributions to the development effort. While
the users do not have technical DBMS expertise, they are
the ones most familiar with their needs, and the old
system. They know what worked well before and what did

not.

3.1.2 Plan

Before embarking on the development effort, the
consultant should have a general plan of attack. This

should include a list of what has been completed, what

is being worked on, and what is yet to be done, It should

also include some peripheral items which may or may not be

included, depending on how things go. The plan should not

be construed as a rigid schedule, but as an aid in order-

ing priorities and in making sure important details are

not overlooked. The very act of writing down the plan can

often serve as a reminder of things forgotten. It can

also bring conflicts and inconsistencies into focus.

45

3.1.3 Trade-~-offs

While working on the project, the consultant
should constantly be on the lookout for possible compro-
mises and trade-offs. The trade-offs should be user
oriented. If it is possible, the users should be the
ones who actually make the choice, after the consultant
has fully gone over the possibilities. The expedient
choice for the consultant will sometimes make the system
more difficult to use for the users. On the other hand,
very few things work out exactly as planned. The con-
sultant should be flexible enough in his (or her) approach
to be able to take the '"second best'" alternative, possibly
at a later date. The best local solution is sometimes

not the best global solution.

3.1.4 0dds and Ends

The consultant may find it helpful to keep care-
ful notes about what has been done. The users undoubt-
edly have budgets to make and justify, and could easily
require periodic formal reports and projections. The
users, especially if the consultant has worked closely
with them, may help with the reports.

Two final warnings to the consultant: (i) never
be too.sure you completely understand what the user wants;

and (ii) be on the lookout for instances of Murphy's Law.

46

3.2 Pre-Design Phase

The pre-design phase of the development effort
will be relatively short, but can set the tone for the
remainder of the work. Misunderstandings at this point
can come back to haunt the consultant later. The pre-
design phase eséentially means the initial contact, the
Jjob description, and the delineation of user and consul-
tant responsibilities.

In the initial contact, the users will generally
describe their particular needs. The consultant will
give a general description about the capabilities of a
DBMS. The consultant's description should be specific
as to the types of activities a DBMS application is best
suited for, but should avoid jargon and should not be too
technical. It might be desirable to prepare a simple
example to illustrate key points. The consultant should
not be guilty of overselling (if for no other reason,
than to avoid looking like an ass later). 1In fact, the
consultant should point out potential alternative designs,
along with their pros and cons. Obviously all of the
above will probably not occur in a single meeting. The
"initial contact'" could be spread out over two or three
meetings.

Once the decision to ''go DBMS'" has been made, the

consultant must ascertain the users' willingness to work

47

with him (or her). If that is not forthcoming, the con-
sultant should suddenly recall pressing concerns which
make it impossible to undertake (a very apt word) a vast
project with only half-vast methods of attack. Assuming
that the users are willing to work with the consultant,
the direct line of authority should be spelled out. It
should be established from the first which individual(s)
the consultant will be working directly with.

In conjunction with the principal user liason
(hereafter referred to as the user), the job description
and measures of effectiveness should be spelled out in
some detail, preferably in writing. The functional
specifications of the proposed system should be worked
out, and prioritized in case it turns out that not all
can be implemented. Possible future developments should
also be discussed and prioritized, as they may affect the
design and application programs.

In order to appraise the user of general progress,
the consultant should set a general schedule and order of
activities (not necessarily with expected times for each
activity). Tasks which require the cooperation of out-
siders, e.g., the computer center or special consultants
on certain technical problems, should be identified as
soon as possible, Arrangements for the cooperation
should begin as soon as possible so that unnecessary

delays will not occur later on.

48

In some cases it will actually be the users'’
responsibility to arrange for the outside assistance.
The consultant's role in those cases should be a support-
ive one, perhaps with suggestions on how to best obtain
the results. The consultant definitely should not
abrogate any connection with the activity just because he
(or she) is not directly involved. (The author's fail-
ure to make any suggestions on how to best obtain compu-
ter center cooperation on the tape conversion problem of
the case study [see section 2.4} may have delayed imple-

mentation.)

3.3 Design
The design phase marks the beginning of the

technical work on the DBMS application. It is a phase
that never really ends, even after implementation. There-
fore the most important guideline for the consultant is
to keep the design flexible, so that changes can be accom-

modated.

3.3.1 A VWorkable Design

Producing a workable design will undoubtedly be
an iterative back and forth process between the consultant
and the user. Some of the key factors affecting the

design, in pretty much their order of importance, are the

419

functional specifications of the system, processing
efficiency for the application programs, future appli-
cation developments, and the size of the data base, which
includes the space for records, overhead, and future ex-
pansion. Also, there probably 1is some overriding funda-
mental problem which caused the users to consider a DBMS
application in the first place. (In the case study, 1t
was the update problem.) Any design must first and
foremost attack thﬁt problem.

Each design iteration should consist of the
consultant presenting a possible design to the user,
indicating what each of the data items are, showing the
linkages between record types, and giving a general idea
of how the functional specifications will be met. The
consultant should point out possible trade-offs and com-~
promises. A clear schematic diagram (see [11]) will aid
the user in deciding which data items should be left out
or added, which important factors were somehow overlooked
in earlier discussions, which linkages were unimportant
and should never have been made, and, in general, clear-

ing up earlier misunderstandings.

3.3.2 The 0ld System

If the DBMS application is replacing an earlier

computer system, the old system can be a valuable guide

50

toward deciding which data items go with which record
types, how linkages should be made, and even such mun-
dane matters as naming of record and set types. By
making the new system bear a superficial resemblance to
the old, even at a slight loss in overall efficiency, the
consultant will aid the users in understanding the system.
This can possibly mean the difference between a workable

going concern, and an elegant disaster.

3.3.3 The Loading Plan

During the design phase, the consultant should
begin firming a plan for loading the data base. This
requires the close cooperation of the user, as the user
should be responsible for providing the data for the
loading. The loading plan and the data to be loaded can
affect both the system design and the logic of the appli-
cation program used for the loading.

Making the user responsible for providing the
loading data is important for several reasons. Among them
are:

(i) The user is the only one qualified to know
what data is valid, and what data is not valid. Having to
provide the loading data will force the user to clearly
think through what should be included, and what should not.

(1ii) If the consultant has to assemble the loading

51

data, he (or she) will not be able to work on other tasks
for which no one else is qualified, thus delaying the
entire project.

(iii) Gathering the loading data will aid the
user in understanding the design and usage of the new
system.

(iv) Gathering the data will aid the user in
thinking about needed application programs.

(v) Finally, gathering the data will make the
user aware (if he was not already) of the computer sys-

tem axiom ''‘garbage in, garbage out."

3.4 Application Programs

The application programs include the loading
program, probably to be used only once, and the programs
written to satisfy the functions of the system, which
will probably be used many times. The loading program
is a special case, as it is the only one where the con-
sultant is not completely in control. The logic of the
loading program depends on the data provided by the
users. For testing and debugging the loading program,
the consultant must know the format and general contents
of the loading data. The user can be a big help here in
providing the details necessary, and possibly providing

the test data itself (as was the case in the case study).

52

If the user does provide the test data for the loading
program, the consultant must make sure that all of the
logical branches of the program are tested.

It is probably better not to use the real data
as test data because the sheer volume of the real data
precludes complete checking of linkages, data item
values, etc. The test data should be small enough to
test and check details, and large enough to cover most
situations, As there will be some kind of an update
program, the test data for the loading program does not
have to cover all situations for all the application
programs. An update program can load other remaining
test data.

The importance of proper test data and procedures
cannot be overemphasized. The consultant will go away
and leave the users "holding the bag'" after system
implementation, Even if the system works perfectly,
there will be problems if the user manuals are not very
good. Thorough testing with good test data is very help-
ful in writing good user manuals. More will be said
about the manuals in the next section.

The application programs themselves, especially
the interactive ones, should be as complete and "idiot
proof" as possible. User input should be simple and

described fully. The machine should do as much of the

53

work as possible. There is a good chance that the people
the programs will be interacting with will not be techni-
cally oriented. They will not be readily able to follow
involved logical sequences. The programs should antici-

pate user input as much as possible, and guide that input

with appropriately displayed messages. It is probably a

good idea to sacrifice 1/0 efficiency, and have the
terminal users input only one line at a time. The user
liason should test the interactive programs himself (or
herself). If that works out, it would be desirable to
get others to try them also, if possible some of the
people who will be using them after implementation,

After the user has checked out the application
programs, it is probable that he (or she) will have
suggestions to make. At this point the consultant will
have to be very careful. The user probably would be
referring to one application program. If the sugges-
tiohs merit inclusion into the system, and involve changes
only in the particular program, there will be no real
problem. If the suggestions require changes in the schema,
however, there may be a big problem. Changes in the
schema, especially those that would change linkages and/or
methods of access, can affect all the application programs.

The ramifications of a single change can be far reaching
in terms of the entire system, and could cause substantial

delays in return for a minor gain. This is not to say

54

that the changes should not be made, only that they
should be investigated fully before they are attempted.
Then the alternatives should be presented to the user,
who should make the decision as to whether or not the
changes should be implemented. (The user may claim that
the suggested changes should have been incorporated into
the system in the first place. That may be true, but it
is beside the point. The issue at this time would be
whether it is better to undo work already done, or live
with what exits.)

Batch processing applications using a DBMS data
base require some planning. DBMS application programs
tend to be I/0 bound. When properly used, a DBMS appli-
cation should increase overall system efficiency, but
may decrease processing speed on some individual programs.
One possible solution is the one taken in this case study:
to create a temporary file, and then use that as the
input for the batch runs. Another possibility is simply
to schedule batch runs for times when the computer is not
busy. The decision may be just to live with the situation,
and not do anything special. The important point is to
recognize the problem, to make sure the user recognizes it
also, and to make an active decision rather than to just

fall into one by default,

55

3.5 Documentation and Manuals

3.5.1 Documentation

The most important thing that can be said about
documentation is: DO IT! Check with the user to see {f
there are any documentation standards to be met. If there
are, fine., If not the consultant will have to decide on
his (or her) own standards. In addition to the usual
source listings, the documentation should include at least
a schema diagram, a data dictionary, flow charts of the
application programs, and a written narrative explaining
the logical branches in each program.

Documentation samples should be shown to the user
to see if he (or she) can follow the logic. As the user
will be responsible for maintaining the system after
implementation, the more complete the documentation, the
better. In the case study, in order to make cross refer-
encing easier, the author alphabetized the various proce-
dures in the narrative, and indicated by line number

where they could be found on the source listing.

3.5.2 General Information Manual

As mentioned several times earlier, the users are
not familiar with DBMS's. They will have to gain some

expertise in the area in order to maintain the system.

56

One way the consultant can help is to provide a general
information manual. The purpose of this manual is to
aid the users in using the DBMS and its facilities by
aiding them in reading the vendor manuals. (For some
reason vendors seem to pride themselves on providing
difficult to read manuals.) The application programs
will probably be written in a host language (COBOL,
FORTRAN, PL/1, etc.) using special data base commands.
The general information manual should explain the logic
involved in using the most common of the commands, e.g.,
common sequences in which they are used. The manual
should also explain how to use the recovery techniques
and the information gathering techniques of the DBMS.
There will inevitably be system crashes. There will also
be times when the user wants to check on such details as
data item values, linkages, available space, and other
items of interest about the data base. (If the overall
computer system allows it, it might be a good idea for
the consultant to leave the test data base as a separate
entity from the real one. That way the users will have
something to practice on which resembles the real thing,
and which will cause no real harm if a partially debugged

program mangles the data base.)

57

3.5.3 Application Program Manuals

Good user manuals for the application programs,
especially the interactive programs, are critical to the
proper running of the system. A perfect system is of no
value if it cannot be used.

A user manual for an application program should
explain the general purpose of the program, the different
types of output possible, and how, when, and in what form
user input should be. If the program is interactive, the
manual should explain each terminal message from the
machine'(in some detail). A terminal message which says:

ENTER THE ROSTER TYPE
may have been crystal clear in meaning to both the
consultant and the user liason when the manual was written,
but could easily be gibberish to the terminal user.

The manuals should make clear what user input is
valid in each case. To a certain extent, the consequences
of each valid input should be explained. To a larger
extent, the consequences of invalid input should be
spelled out. The manuals should explain what the user can
do in order to recover from invalid input, and what to do
if the system gets tempermental and refuses to take valid

input (as sometimes happens in the best of systems).

58

3.6 Implementation

At this point the design has been finalized, the
application programs have been written, tested, and
debugged, documentation and manuals have been completed,
and the system is all set to go, right? If you buy
that, perhaps you would also be interested in these gold
mine stocks.... In the development effort to this point,
there have undoubtedly been a number of minor changes
whose cumulative effect might have thrown off some of
the initial calculations. One of the first tasks is to
recheck the size of the data base, by area if the DBMS
breaks up the data base into areas., Make sure the
input formats of the loading data agrees with the format
specified in the loading program,

After the loading program has been run, check the
contents of the data base for proper data item values,
linkages, amount of free space, etc. Then check the
application programs. Programs which work well on a
small data base might not do so on a large one.

Finally, before the system is turned over, the
consultant should go over the components of the system
with the users. Final user questions should be answered.
And lastly, the consultant should make sure the users
have understood all the documentation and manuals, includ-

ing the vendor manuals,

59

3.7 Items for Further Study

The knowledgeable reader will have noticed that
there are several key items either not mentioned in the
previous sections of this chapter, or mentioned super-
ficially only. Among these are such things as simultan-
eous updating of the data base, transaction logging,
security procedures, and extensive system testing. These
items, and others, were left up to now because the case
study either did not require them, or did not provide
enough insight from which to generalize. Such items will
be discussed briefly in this section, sometimes with out-
side references mentioned. All the items mentioned in
this section require further study. Also, since one
case study can be misleading, the items in the previous
sections merit further study.

The order of presentation here is (more or less)
the order in which a consultant would have to consider
the items in a development effort.

a. The assumption of this thesis is that the
consultant would be working largely by himself on the
technical details of the development. These guidelines,
or a modified version of them, might be valid for a small
(two or three people) team, which might be preferable
for a system slightly larger than the one envisioned here.

b. The case study was particularly well suited

60

for a single data base in a DBMS application (see section
2.4). Other systems might require more extensive inves-
tigation into alternative file designs, multiple data
bases, or a DBMS database used in conjunction with
another file, such as an index file.

c. For the reasons mentioned in section 2.8,
transaction logging of update runs was not included in
the case study. Any system having batch or simultan-
eous on-line updating would have to consider transaction
logging.

d. Should transaction logging be used, then
recovery procedures much more sophisticated than the
ones used in this case study would have to be implemented.

e. If the situation is such that simultaneous
updating will be done on-line, i.e., two or more users
will be updating the data base from different terminals
at the same time, then careful programming is called for.
Yourdon in [15) discusses this problem. The DBMS soft-
ware may take care of many of the problems that Yourdon
alludes to, but the situation still requires more care-
ful planning than the case study did, and will alter the
sturcture of the application programs.

f. 1If updating is done in batch mode, then
backup and recovery, and update program input, will be

different enough from that in the case study to require

61

separate study.

g. If there is extensive batch programming of
any type, efficiency considerations with respect to the
design of the schema and the application programs have
to be taken into account much more than they were in
the case study.

h, 1If there are organization documentation stan-
dards, the documentation suggested here should be com-
patible, but it might be desirable to look into that
some more. The documentation suggested here might need
some modification.

i. If the data contained in the data base 1is
particularly sensitive and/or financial in nature, then
extensive security and privacy measures are called for.
These will tend to be hardware and/or software oriented,
and depend on what is available at a given computer
installation, There may, however, be some general guide-
lines. Martin in [13], among others, has written an
entire book on the subject.

J. If the system is complicated and/or is apt
to have multiple users at the same time, system flow-
charts can help to plan the system, Implementation can
take place in carefully planned stages. Finally,
extensive system testing is called for before the system

1s turned over to the users.

62

3.8 Summary

In the previous sections, guidelines were

presented in narrative style. That approach was taken

so tnat the guidelines could be justified as much as

possible, and so that repercussions of particular

actions could be discussed. This section just lists the

key tasks in more or less their proper order.

A.

B.

General
i. Involve the user in all stages.
ii. Keep an updated general plan.
iii. Watch for compromises and trade-offs.
iv. Always try to ease things for the users
v. Remember: If something can go wrong,

it will; if nothing can go wrong,

something will anyway.

Pre-design

i.

ii.

iii.

iv,

Get the general idea of the users'
problems.

Describe DBMS capabilities to the users,
Establish which individual will be the
principal user contact, and develop a
close working relationship,

Get functional specifications detailed

and prioritized.

C. .Design
i. Work out the schema in conjunction
with the user,
ii. Begin firming the loading plan.
iii. Investigate whether transaction
logging is necessary,
D. Application Programs
i. Work out the loading plan and
program with the user,
ii. Plan for test data and program
testing.
iii. Write, test, and debug programs.
iv., Have the user test the interactive
programs,
v. Consider the problem of batch
processing efficiency,
vi. Consider the problem of
simultaneous update.
vii. Consider the backup and recovery
problem.
E. Documentation and Manuals
i. Check documentation standards,
ii. Write data dictionary,
iii, Write flow charts and documentation

narratives,

64

iv.

Consider the need for system

flow charts,

v. Write general information manual.
vi. Write application program manuals.
Implementation
i. Plan the implementation schedule,
ii. Check the size of the data base,
iii. Check the format of the data for
the loading program.
iv., Load the data base.
v. Check the loaded data base,
vi. Perform necessary system testing,
vii. Review security and privacy features,
viii. Review the system with the users,
ix. Turn the system over to the users.

65

(2]

[3)

(4]

(5]

(6]

(7]

(8]

(9]

Bibliography

Beedle, L. S. A Time to Build Up..., A pamphlet
published by the Council on Tall Buildings
and Urban Habitat, Bethlehem, Pennsyl-
vania, August, 1977.

, RSVP, An introduction to the Tall
Buildings Project for new staff members,
Bethlehem, Pennsylvania, May, 1975.

Brinker, T. W. '"Controlling a Large Inter-
disciplinary International Research
Project" Master's Thesis, Lehigh
University, 1976.

Burch, J. G. and Strater, F. R. Information
Systems: Theory and Practice, Hamilton
Publishing Company, Santa Barbara,
California, 1974.

Cincom Systems, Inc., TOTAL/7 Reference Manual,
Cincinnati, Ohio, 1976.

Datapro Research Corporation, A Buyer's Guide to
Data Base Management Systems, Delran,
New Jersey, 1975.

DECSYSTEM, DATA BASE MANAGEMENT SYSTEM Adminis-
trators Procedures Manual, Digital
Equipment Corporation, Maynard,
Massachusetts, 1977,

, DATA BASE MANAGEMENT SYSTEM Program-
mer's Procedures Manual, Digital Equipment
Corporation, Maynard, Massachusetts, 1877,

IBM, IMS/VS Version 1, General Information
Manual, seventh edition, White Plains,
New York, 1977.

66

(10] Kroenke, P. Database Processing, Fundamentals,
Modeling, Applications, Sclence Research
Associates, Chicago, Palo Alto, Toronto,
Henley-on-Thames, Sydney, Paris, Stuttgart,
1977.

[11] Martin, J. Computer Data-Base Organization,
Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1977.

(12) . Principles of Data-Base Management,
PrentiIce-Hall, Inc., Englewood ClifIs,
New Jersey, 1976.

[13) . Security, Accuracy, and Privacy in
Computer Systems, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1973.

(14] National Bureau of Standards Handbook 113,
‘ CODASYL Data Description Language
Journal of Development, U. S. Department
of Commerce, Washington, D. C., 1974.

[15)] Yourdon, E. Design of On-Line Computer Systems,
Prentice-Hall, Inc,, Englewood Cliffs,
New Jersey, 1972,

67

APPENDIX A

SCHEMA DATA DESCRIPTION

68

IMAGES BY COMMAND.

NOTE UNANTICIPATED.
INTERCEPT BIND,

ASSIGN TALL-AREA TO LISTS
RPP 200

BUFFER 4

CALC 2 RPP

FIRST PAGE 1S 800

LAST PAGE IS 2200

PAGE SIZE IS 512 WORDS.
ASSIGN NAIM-AREA TO NAIMS
RPP 100

BUFFER 4

CALC 2 RPP

FIRST PAGE IS 100

LAST PAGE IS 600

PAGE SIZE IS 512 WORDS.

SCHEMA NAME IS TALL-B.

AREA NAME IS TALL-AREA
PRIVACY LOCK EXCLUSIVE UPDATE IS FIXEM
PRIVACY LOCK FOR RETRIEVAL IS READEM.
AREA NAME IS NAIM-AREA
PRIVACY LOCK EXCLUSIVE UPDATE IS FIXEM

PRIVACY LOCK FOR RETRIEVAL IS READEM.

69

RECORD NAME IS ROSTER-REC
LOCATION MODE IS CALC USING ROS-NUM
DUPLICATES NOT ALLOWED
WITHIN TALL-AREA.
02 ROS-NUM
02 R-TYPE
02 ROSTER-IDENT
02 R-DETAIL-1
02 R-DETAIL-2
02 ROS-OUTPUT
RECORD NAME IS R-COMMITTEE
LOCATION MODE IS CALC USING R-COMM-NUM
DUPLICATES NOT ALLOWED
WITHIN TALL-AREA,
02 R-COMM-NUM
02 R-COMM-TYPE
02 R-COMM-IDENT
02 R-COMM-DETAIL-1
02 R-COMM-DETAIL-2
02 R-COMM-OUTPUT
RECORD NAME IS GROUP-REC
LOCATION MODE IS CALC USING G-NUM
DUPLICATES NOT ALLOWED
WITHIN TALL-AREA.
02 G-NUM

70

PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC

999,

X(86).
X(32).
X(30).
X(4).

999.

X(6).
X(32).
X(30).
XXXX.

999 .

02 G-TYPE

02 GROUP-IDENT
02 GROUP-DETAIL-1
02 GROUP-DETAIL-2
02 G-OUTPUT
RECORD NAME IS GROUP-COMMITTEE
LOCATION MODE IS CALC USING G-~COMM-NUM

DUPLICATES NOT ALLOWED

WITHIN TALL-AREA.

02 G-COMM-NUM

02 G-COMM-TYPE

02 G-COMM-IDENT

02 G-COMM-DETAIL-1

02 G-COMM-DETAIL-2

02 G-COMM-OUTPUT
RECORD NAME IS NAME-GROUP-REC

LOCATION MODE IS VIA GROUP-NAME-SET

WITHIN TALL-AREA.

02 GROUP-RESPONS
02 GROUP-NAME
RECORD NAME IS NAME-G-COMM-REC

LOCATION MODE IS VIA G-COMM-NAME-SET

WITHIN TALL-AREA,

02 G-COMM-RESPONS

02 G-COMM-NAME

71

PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC

PIC

PIC

XX.
X(6).
X(32).
X(30).

XXXX.

999.
XX.
X(6).
X(32).
X(30).
XXXX.

X(6).
X(47).

X(6).
X(47).

RECORD NAME IS NAME-R-COMM-REC
LOCATION MODE IS VIA R-COMM-NAME-SET
WITHIN TALL-AREA.
02 R-COMM-RESPONS
02 R-COMM-NAME
RECORD NAME IS NAME-ROSTER-REC
LOCATION MODE IS VIA ROSTER-NAME-SET
WITHIN TALL-AREA.
02 ROSTER-RESPONS
02 ROSTER-NAME
RECORD NAME IS STATE-COUNTRY-REC

PIC X(8).
PIC X(47).

PIC X(6).
PIC X(47).

LOCATION MODE IS CALC USING STATE-COUNTRY

DUPLICATES NOT ALLOWED
WITHIN TALL-AREA.

02 STATE-COUNTRY SIZE 32 USAGE DISPLAY-6.

RECORD NAME IS CITY-REC

LOCATION MODE IS VIA CITY-COUNTRY-SET

WITHIN TALL-AREA.
02 CITY
RECORD NAME IS ORGANIZATION-REC

LOCATION MODE IS CALC USING ORGANIZATION

DUPLICATES ALLOWED
WITHIN TALL-AREA.

02 ORGANIZATION

72

PIC X(32).

PIC X(34).

RECORD NAME IS NAME-FILE

LOCATION MODE IS CALC USING NAIM

WITHIN NAIM-AREA.

02
02
02
02
02
02
02

02

NAIM SIZE 47 USAGE DISPLAY-6.

TITLE PIC X(17).
SECOND-LINE PIC X(32).
THIRD-LINE PIC X(32).

FOURTH-LINE SIZE 33 USAGE DISPLAY-6.

PHONE PIC X(10).
START-DATE PIC X(4).
END-DATE PIC X(4).

SET NAME IS ROSTER-GROUP-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS ALWAYS NEXT

OWNER IS ROSTER-REC

MEMBER IS GROUP-REC

MANDATORY AUTOMATIC

LINKED TO OWNER

SELECTION CURRENT.

SET NAME IS ROSTER-COMM-SET

MODE IS CHAIN LINKED TO PRIOR

ORDER IS ALWAYS NEXT

OWNER IS ROSTER-REC

MEMBER IS R-COMMITTEE

MANDATORY AUTOMATIC

73

LINKED TO OWNER
SELECTION CURRENT.
SET NAME IS GROUP-NAME-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS SORTED WITHIN RECORD-NAME
OWNER IS GROUP-REC
MEMBER IS NAME-GROUP-REC
MANDATORY AUTOMATIC
LINKED TO OWNER
ASCENDING KEY IS GROUP-NAME
DUPLICATES ALLOWED
SELECTION CURRENT.
SET NAME IS GROUP-COMM-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS ALWAYS NEXT
OWNER IS GROUP-REC
MEMBER IS GROUP-COMMITTEE
MANDATORY AUTOMATIC
LINKED TO OWNER
SELECTION CURRENT.
SET NAME IS G-COMM-NAME-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS SORTED WITHIN RECORD-NAME
OWNER IS GROUP-COMMITTEE

MEMBER IS NAME-G-COMM-REC

74

MANDATORY AUTOMATIC
LINKED TO OWNER
ASCENDING KEY IS G-COMM-NAME
DUPLICATES ALLOWED
SELECTION CURRENT.
SET NAME IS NAME-G-COMM-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS ALWAYS NEXT
OWNER IS NAME-FILE
MEMBER IS NAME-G-COMM-REC
MANDATORY AUTOMATIC
LINKED TO OWNER
SELECTION CURRENT.
SET NAME IS NAME-GROUP-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS ALWAYS NEXT
OWNER IS NAME-FILE
MEMBER IS NAME-GROUP-REC
MANDATORY AUTOMATIC
LINKED TO OWNER
SELECTION CURRENT.
SET NAME IS R-COMM-NAME-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS SORTED WITHIN RECORD-NAME

OWNER IS R~COMMITTEE

75

MEMBER IS NAME-R-COMM-REC
MANDATORY AUTOMATIC
LINKED TO OWNER
ASCENDING KEY IS R-COMM-NAME
DUPLICATES ALLOWED
SELECTION CURRENT.
SET NAME IS NAME-R-COMM-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS ALWAYS NEXT
OWNER IS NAME-FILE
MEMBER IS NAME-R-COMM-REC
MANDATORY AUTOMATIC
LINKED TO OWNER
SELECTION CURRENT.
SET NAME IS ROSTER-NAME-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS SORTED WITHIN RECORDTNAME
OWNER IS ROSTER-REC ;
MEMBER IS NAME-ROSTER-REC
MANDATORY AUTOMATIC
LINKED TO OWNER
ASCENDING KEY IS ROSTER-NAME
DUPLICATES ALLOWED
SELECTION CURRENT.

SET NAME IS NAME-ROSTER-SET

76

MODE IS CHAIN LINKED TO PRIOR
ORDER IS ALWAYS NEXT
OWNER 1S NAME-FILE
MEMBER IS NAME-ROSTER-REC
MANDATORY AUTOMATIC
LINKED TO OWNER
SELECTION CURRENT.
SET NAME IS CITY-COUNTRY-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS SORTED WITHIN RECORD-NAME
OWNER IS STATE-COUNTRY-REC
MEMBER IS CITY-REC
MANDATORY AUTOMATIC
LINKED TO OWNER
ASCENDING KEY IS CITY
DUPLICATES ALLOWED
SELECTION CURRENT.
SET NAME IS CITY-NAME-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS SORTED WITHIN RECORD-NAME
OWNER IS CITY-REC
MEMBER IS NAME-FILE
OPTIONAL MANUAL
LINKED TO OWNER

ASCENDING KEY IS NAIM

77

DUPLICATES ALLOWED
SELECTION CURRENT.
SET NAME IS ORGAN-NAME-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS SORTED WITHIN RECORD-NAME
OWNER IS ORGANIZATION-REC
MEMBER IS NAME-FILE
OPTIONAL MANUAL
LINKED TO OWNER
ASCENDING KEY IS NAIM
DUPLICATES ALLOWED
SELECTION CURRENT.
SET NAME IS ALPHABETICAL
MODE IS CHAIN LINKED TO PRIOR
ORDER IS SORTED
DUPLICATES ALLOWED
OWNER IS SYSTEM
MEMBER IS NAME-FILE
MANDATORY AUTOMATIC

ASCENDING KEY IS NAIM.

SUB-SCHEMA NAME IS UNIVERSAL
PRIVACY LOCK IS ALLAR.

AREA SECTION.
COPY ALL AREAS.

78

RECORD SECTION.
01 ROSTER-REC.
01 R-COMMITTEE.
01 GROUP-REC.
01 GROUP-COMMITTEE.
01 NAME-GROUP-REC.
01 NAME-G-COMM-REC.
01 NAME-R-COMM-REC.
01 NAME-ROSTER-REC.
01 STATE-COUNTRY-REC.
02 STATE-COUNTRY.
03 COUNTRY
03 STATE
01 CITY-REC.
01 ORGANIZATION-REC.
01 NAME-FILE.
02 NAIM.
03 LAST-NAME
03 FIRST-NAME.
04 F-INITIAL
04 REST-FIRST
03 MIDDLE.
04 M-INITIAL

04 REST-MIDDLE

79

PIC X(5).
PIC X(27).

PIC X(20).

PIC X.
PIC X(13).

PIC X.
PIC X(12).

02 TITLE.
02 SECOND-LINE.
02 THIRD-LINE,

02 FOURTH-LINE.

03 CHAR-28 PIC X(28).
03 ZIP PIC X(5).
COPY OTHERS.

SET SECTION.

COPY ALL SETS.

END-SCHEMA

80

APPENDIX B

DATA DICTIONARY

81

DATA DICTIONARY OF TERMS AND DATA NAMES

ALLAR:

USED IN THE TALL BUILDING SCHEMA

The privacy lock for the part of the data base
called the UNIVERSAL sub-schema. This lock may
be changed at the option of the user, but has
to be changed in both the schema and the

application programs.

ALPHABETICAL: The system name given the set of member

AREA :

CHAR-28:

CITY:

records, i.e., the collection of NAME-FILE
records. The set is ordered alphabetically by

member name.

A sub-collection of the entire data base. It
is usually isolated physically in order to

expedite expected processing.

The first 28 characters of the 33 character
data item FOURTH-LINE. FOURTH-LINE is an item

of the record type NAME-FILE.

The 32 character alphanumeric data item in a

CITY-REC record containing the name of the city.

82

CITY-COUNTRY-SET: The name of the collection of cities

and countries or states. A particular occur-
rence would contain a STATE-COUNTRY-REC record
together with the CITY-REC records of the
cities in the state or country given in the

occurrence of the STATE-COUNTRY-REC record.

CITY-NAME-SET: The name of the collection of cities and

CITY-REC:

COUNTRY :

END-DATE :

associated memgers of the project. A particular
occurrence would contain a CITY-REC record and
the NAME-FILE records of the members located in

the particular city.

The name of the record type which has the
records of the cities of the members. 1Its only
data item is CITY.

The data item name given the first five charac-
ters of the data item STATE-COUNTRY. Should the
occurrence of the associated STATE-COUNTRY-REC
record be a state in the United States, COUNTRY
has the value ZZUSA . Otherwise its value is
Just the first five characters of the country

given in STATE-COUNTRY.

The four character alphanumeric data item in
a NAME-FILE record giving the date that the

member ended his association with the project.

83

The date is in the form YYMM.

EXCLUSIVE UPDATE: The mode used for application programs
which can modify the data base. When used,
no other application program can access the

data base for any purpose.

F-INITIAL: The first initial of the first name of a
member. It is the first character of the data
item FIRST-NAME, which is part of the data item
NAIM, which is the item in a NAME-FILE record

containing the name of the member.

FIRST-NAME: The 14 character alphanumeric item con-
taining the first name of a member. It is part
of the item NAIM, which is part of the record

type NAME-FILE,

FIXEM: The privacy lock for application programs using
exclusive update mode. This may be changed at
the option of the user, but should be changed
in both the schema description and the appropri-

ate application programs.

FOURTH-LINE: The 33 character alphanumeric data item in
2 NAME-FILE record containing the fourth line of

the member's four line address.

G-COMM-DETAIL-1: The 32 character data item in a GROUP-

84

COMMITTEE record giving the first part of the

description of the group committee.

G-COMM-DETAIL-2: The 30 character data item in a GROUP-
COMMITTEE record giving the second part of the
description of the group committee.

G-COMM-IDENT: The data item within a GROUP-COMMITTEE rec-
ord giving the last six characters of the eight
character identifier used under the old system
to identify the group committee.

G-COMM~-NAME: The 47 character alphanumeric data item in
a NAME-G-COMM-REC record giving the name of a
member on the associated group committee,

G-COMM-NAME-SET: The name of the collection of group
committees and project members. A particular

occurrence of the set consists of a GROUP-

COMMITTEE record together with the NAME-G-COMM-
REC records of the members on the particular
group committee.

G-COMM-NUM: The three character numeric data item in a

GROUP-COMMITTEE record giving the number used
for internal location purposes of the GROUP-

COMMITTEE record.

C-COMM-OUTPUT: The four character data item within a
GROUP-COMMITTEE record giving a user defined

code used in applications to identify the

particular group committee,

G-COMM-RESPONS: The six character alphanumeric data item

85

in a NAME-G-COMM-REC record identifying the
responsibility of the member in the associated

group committee.

G-COMM-TYPE: The data item within a GROUP-COMMITTEE
record giving the first two characters of the
eight character identifier used under the old

system to identify the group committee.

G-NUM: The 3 digit numeric data item within a GROUP-
REC record giving the number used for internal

location purposes of the GROUP-REC record.

G-OUTPUT: The four character alphanumeric data item
within a GROUP-REC record giving a user defined
code used in applications to identify the partic-

ular group.

G-TYPE: The data item within a GROUP-REC record giving
the first two characters of the eight character
identifier used under the old system to identify

the group. It usually has the value GP,.

GROUP-COMM-SET: The name of the collection of groups and
group committees. A particular occurrence of the
set consists of a GROUP-REC record and the GROUP-

COMMITTEE records of the committees of the group.

GROUP-COMMITTEE: The name of the record type of a commit-

tee contained in a roster which is broken up into

86

groups, or in other words the record type of

a group committee, A GROUP-COMMITTEE record has
as data items G-COMM-NUM, G-COMM-TYPE, G-COMM-
IDENT, G-COMM-DETAIL-1, G-COMM-DETAIL-2, and

G-COMM-OUTPUT.

GROUP-DETAIL-1: The 32 character alphanumeric data item
within a GROUP-REC record used to give the first

part of the description of the group.

GROUP-DETAIL-2: The 30 character alphanumeric data item
within a GROUP-REC record used to give the

second part of the description of the group.

GROUP-IDENT: The data item within a GROUP-REC record
giving the last six characters of the eight
character identifier used under the o0ld system

to identify the group.

GROUP-NAME: The 47 character data item within a NAME-
GROUP-REC record giving the name of a member in

the associated group.

GROUP-NAME-SET: The name of the collection of groups and
project members. A particular occurrence of the
set consists of a GROUP-REC record and the NAME-
GROUP-REC records of various members in the

group.

87

GROUP-REC: The name of the record type of a group.
GROUP-REC has as data items G-NUM, G-TYPE,
GROUP-IDENT, GROUP-DETAIL-1, GROUP-DETAIL-2,
and G-OUTPUT.

GROUP-RESPONS: The six character alphanumeric data item
within a NAME-GROUP-REC record giving the respon-

sibility of the member in the associated group.

LAST-NAME: The 20 character item giving the last name of
a project member., LAST-NAME is a sub-field of
the data item NAIM, which is an item of the

record type NAME-FILE.

M-INITIAL: The first initial of the middle name of a
project member. M-INITIAL gives the first
character of the data item MIDDLE. MIDDLE is a
sub-field of the data item NAIM, which is an

item of the record type NAME-FILE.

MIDDLE: The 13 character item giving the middle name of
a project member., MIDDLE is a sub-field of the
data item NAIM, which is an item of the record

type NAME-FILE,

NAIM: The 47 character alphanumeric item in a NAME-FILE
record giving the full name of a project member.
NAIM is sub-divided into the fields LAST-NAME,

FIRST-NAME, and MIDDLE,

88

NAIM-AREA: The area of the data base consisting of all

the NAME-FILE records.

NAME-FILE: The record type of the individual project
members. NAME-FILE has as data items NAIM, TITLE,
SECOND-LINE, THIRD-LINE, FOURTH-LINE, PHONE,

START-DATE, and END-DATE.

NAME-G-COMM-REC: The record type linking a member with a
group committee. It has as fields G-COMM-RESPONS

and G-COMM-NAME .

NAME-G-COMM-SET: The name of the collection of member
records and links to associated group committees.
A particular occurrence of the set consists of a
NAME-FILE record together with a NAME-G-COMM-REC
record for each group committee that the member

is on,.

NAME-GROUP-REC: The record type linking a member with a

group. It has fields GROUP-RESPONS and GROUP-NAME.

NAME-GROUP-SET: The name of the collection of member
records and links to associated groups. A partic-
ular occurrence of the set consists of a NAME-FILE
record together with a NAME-GROUP-REC record for
each group the member is specifically associated

with.

NAME-R-COMM-REC: The record type linking a member with a

89

roster committee. It has as fields R-COMM-

RESPONS and R-COMM-NAME.

NAME~R-COMM~-SET: The name of the collection of member
records and links to associated roster committees.
A particular occurrence of the set consists of a
NAME-FILE record together with a NAME-R-COMM-REC
record for each roster committee that the member

is on,

NAME-ROSTER-REC: The record type linking a member with
a roster. It has as fields ROSTER-RESPONS and

ROSTER-NAME .,

NAME-ROSTER-SET: The name of the collection of member
records and links to associated rosters. A
particular occurrence of the set consists of a
NAME-FILE record together with a NAME-ROSTER-
REC record for each roster the member is

specifically associated with.

ORGAN-NAME-SET: The name of the collection of organiza-
tions and associated member records, A particu-
lar occurrence of the set consists of an ORGANI-
ZATION-REC record together with'a NAME-FILE

record for each project member in the organiza-

tion.

ORGANIZATION: The 34 character alphanumeric data item in

90

an ORGANIZATION-REC record giving the name of the

organization.

ORGANIZATION-REC: The record type of organization records
for the project members' organizations. Its only
date item is ORGANIZATION. Organizations which
are also project members would have a NAME-FILE

record in addition to an ORGANIZATION-REC record.

PHONE : The 10 character alphanumeric data item in a
NAME-FILE record giving the member's phone

number.

R-COMM-DETAIL-1: The 32 character alphanumeric data item
in an R-COMMITTEE record giving the first part

of the description of the roster committee.

R-COMM-DETAIL-2: The 30 character alphanumeric date item
in an R-COMMITTEE record giving the second part

of the description of the roster committee.

R-COMM-IDENT: The data item within an R-COMMITTEE record
consisting of the last six characters of the
eight character identifier used under the old

system to identify the roster committee.

R~-COMM-NAME: The 47 character alphanumeric data item in
a NAME-R-COMM-REC record giving the name of a
member associated with the particular roster

committee,

91

R-COMM-NAME-SET: The name of the collection of roster
committees and associated project members. A
particular occurrence of the set consists of an
R-COMMITTEE record together with the NAME-R-

COMM-REC records of the members on the committee.

R-COMM-NUM: The 3 digit numeric data item in an
R-COMMITTEE record giving the number used for
internal location purposes of the R-COMMITTEE

record.

R-COMM-OUTPUT: The 4 character alphanumeric data item
within an R-COMMITTEE record giving the user
defined code used in identifying the roster

committee in applications.

R-COMM-RESPONS: The six character alphanumeric data item
within a NAME-R-COMM-REC record giving the
responsibility of the member on the particular

roster committee.

R-COMM-TYPE: The data item within an R-COMMITTEE record
giving the first two characters of the eight
character identifier used under the old system
to identify a roster committee. It usually

identifies the type of committee.

R-COMMITTEE: The name of the record type used for the

record of a committee contained in a roster which

92

is not broken up into groups. Its fields are
R-COMM-NUM, R-COMM-TYPE, R-COMM-IDENT, R-COMM-
DETAIL-1, R-COMM-DETAIL-2, and R-COMM-OUTPUT.

R-DETAIL-1: The 32 character alphanumeric data item

within a ROSTER-REC record giving the first part

of the description of the roster,.

R-DETAIL~-2: The 30 character alphanumeric data item

R-TYPE:

READEM :

within a ROSTER-REC record giving the second part

of the description of the roster.

The data item within a ROSTER-REC record giving
the first two characters of the eight character
identifier used under the old system to identify
the roster. It usually describes the type of

roster,

The privacy lock for application programs using
retrieval mode. It may be changed at the option
of the user, but should be changed in both the

schema description and the appropriate applica-

tion programs,

REST-FIRST: The last 13 characters of the 14 character data

item FIRST-NAME. FIRST-NAME is part of the data
item NAIM, which is a field of the record type
NAME-FILE,

REST-MIDDLE: The last 12 characters of the 13 character

93

data item MIDDLE. MIDDLE is part of the data
item NAIM, which is a field of the record type

NAME-FILE .

RETRIEVAL: The usage mode for application programs which
access the data base without changing it. While
in use, updates under the mode exclusive update
are not permitted, but other users may use

retrieval mode.

ROS-NUM: The 3 digit numeric data item in a ROSTER-REC
record giving the number used for internal

location purposes of the roster.

ROS-OUTPUT: The 4 character alphanumeric data item
within a ROSTER-REC record giving the user
defined code used in applications to identify

the roster.

ROSTER-COMM-SET: The name of the collection of rosters
and associated committees. A particular occur-
rence of the set consists of a ROSTER-REC record
and R-COMMITTEE records for the committees of

the roster.

ROSTER-GROUP-SET: The name of the collection of rosters
and associated groups. A particular occurrence
of the set consists of a ROSTER-REC record and

GROUP-REC records for the groups contained in

94

the roster.

ROSTER-IDENT: The data item consisting of the last six
characters of the eight character identifier

used under the old system to identify the roster.

ROSTER-NAME: The 47 character alpanumeric data item
within a NAME-ROSTER-REC record giving the name

of a member on the particular roster.

ROSTER-NAME-SET: The name of the collection of roster and
member names. A particular occurrence of the set
consists of a ROSTER-REC record together with the
NAME-ROSTER-REC records of the project members

on the roster.

ROSTER-REC: The record type containing the records of
the rosters. Its fields are ROS-NUM, R-TYPE,
ROSTER-IDENT, R-DETAIL-1, R-DETAIL-2, and
ROS-OUTPUT. -

;o
ROSTER-RESPONS: The six character alphanumeric data item
within a NAME-ROSTER-REC record giving the

responsibility of the member on the associated

roster,

SCHEMA: The logical description of the data base, giving
the records, data items, areas, sets, linkages,

and sub-schemas.

SECOND-LINE: The 32 character alphanumeric data item

95

contained in a NAME-FILE record type. It gives
the second line of the member's four line

address.

START-DATE: The four character alphanumeric data item

STATE :

contained in a NAME-FILE record type. It gives
the starting date of the member with the project

in the form YYMM.

The last 27 characters of the data item STATE-

COUNTRY., If STATE-COUNTRY-REC gives the record
of a state in the United States, STATE has the

name of the state. Otherwise, it is just a

continuation of the country name.

STATE-COUNTRY: The 32 character alphanumeric data item

in STATE-COUNTRY-REC giving the name of the
state or country. It is broken up into COUNTRY
and STATE. 1If COUNTRY has the value ZZUSA,
then STATE has the name of a state in the
United States. Otherwise, STATE-COUNTRY has
the name of a country other than the United

States.

STATE-COUNTRY-REC: The name of the record type of states

and countries. Its only data item is STATE-

COUNTRY.

SUB-SCHEMA: That part of the logical data structure set

96

up for a given application program or programs.
Each sub-schema must be described in the schema
description. In this case there is only one
sub-schema defined. It consists of the entire
data base and is named UNIVERSAL. The user has

the option of adding others if desired.

TALL-AREA: The name of the area of the data base

containing all records except NAME-FILE records.

THIRD-LINE: The 32 character alphanumeric data item

TITLE :

within a NAME-FILE record containing the third

line of the member's four line address.

The 17 character alphanumeric data item within
a NAME-FILE record containing the title of the
member. If the member is an organizational mem-

ber, TITLE has the value ORGAN

UNIVERSAL: The name of the only sub-schema currently

ZIP:

defined in the schema description.

The 5 character alphanumeric data item making up
the last 5 characters of the data item FOURTH-
LINE. FOURTH-LINE IS AN ITEM OF THE RECORD TYPE
NAME-FILE. If the member has a known zip code,

ZIP has the value of that zip code.

97

APPENDIX C

DOCUMENTATION AND FLOWCHART

FOR LOADING PROGRAM

98

DOCUMENTATION FOR LOADING PROGRAM

The loading program LOADDB.CBL is a COBOL
program which loads the data base from two external files,
The first, called ROSTER-COM-GROUP, has the internal
location numbers, identifiers, and descriptions of the
rosters, roster committees, groups, and group committees,
It is assumed that the file is structured so that groups
are located in the roster that they follow, and that
committees are in the roster or group that they follow.
The second file, called NAME-ROSTER-FILE, contains
information about individual members. The information
is whether the member is a person or organization, the
name (last name and initials of a person and name of an
organization), title, address, state or country, city,
organization, and committees, rosters or groups that the
member is on.

The program starts by opening the appropriate
files and areas of the data base. Since the program
changes the data base, its usage mode is exclusive update.

Processing starts by checking the ROSTER-COM-
GROUP file to see if there are any more records to
process. If not, it branches to the processing of NAME-
ROSTER-FILE. ROSTER-COM-GROUP is processed first so that
a member may be placed in the appropriate rosters, groups,

99

and/or committees when NAME-ROSTER-FILE is processed.
The first step in processing a ROSTER-COM-
GROUP record is checking the data item TYPE-GROUP., 1If

TYPE-GROUP

"QQROS" PUT-IN-ROSTER is performed. If

TYPE-GROUP

"QQCOM' COMMITTEE-CHECK is performed. If
TYPE-GROUP is anything else, an error message is dis-
played and the program reads the next ROSTER-COM-GROUP
record,

PUT-IN-ROSTER stores the roster record. RC-NUM
is used as both the roster's internal location number
and the index for the table LOC-KIND, which keeps the
data base key for the ROSTER-REC record (the data base
key is used for direct access to the record without going
through a calculation procedure) and an indicator to say
that it is the key of a ROSTER-REC record. PUT-IN-
ROSTER also sets GP-FLAG equal to 0, and calls LEFT-
IDENT, which left justifies the roster identification
by checking it character by character.

COMMITTEE-CHECK checks to see if TYPE-ID = "GP",
If yes, the entity is a group. GP-FLAG is given the
value 1, and STORE-GROUP is performed. STORE-GROUP acts
similarly to PUT-IN-ROSTER. If TYPE-ID is not "GP", .
GP-FLAG is checked to see if the entity is a group commit-
tee (if GP-FLAG = 1) or a roster committee (if GP-FLAG =
O0). Then either STORE-G-COMM or STORE-R-COMM, whichever

is appropriate, is performed. Both are similar to
100

PUT-IN-ROSTER.

The processing of NAME-ADDRESS-FILE starts by
seeing if there are any more records to process. If not,
the program ends. If there is a record to process, the
first step is to see if the record is for an organiza-
tional member or a person member. Then either ORGAN-
MEMBER or PERSON-MEMBER is performed to enter the name
and title into NAME-FILE. Next the program checks to
see if the member is located in the United States. If
so, USA-ROUTINE is performed, otherwise FOREIGN-ROUTINE
is performed. In either case either the correct STATE-
COUNTRY-REC record is found, or a new one is created.
Then the program either finds the correct city (using
the routine CITY-ROUTINE) or, if the city is not among
those listed, creates a new CITY-REC record in the CITY-
COUNTRY-SET set occurrence owned by the current STATE-
COUNTRY-REC record. The next step the program takes is
to either find the correct ORGANIZATION-REC record or
create a new one, Then it moves the appropriate data to
NAME-FILE, stores NAME-FILE, and inserts it into CITY-
NAME-SET set and ORGAN-NAME-SET set.

Finally the program checks NUM-COMM to see if
the member is on any rosters, committees, and/or groups,
and how many the member is on. If NUM-COMM is not zero,

the program performs COMMITTEE-INSERT NUM-COMM times.

101

COMMITTEE-INSERT moves the internal location number to
a temporary holding place, and used the table LOC-KIND
to find the type of entity the member is on, and its
data base key. It then puts the member's name and

responsibility in the appropriate chain.

102

START
LOADING)

y

- ReAV
OFEN (NMPUT MEMBER
FILES SIS
0 PEN DATABASE
AREAS R,
| FlLEs
L 4 AOD . iC

STORE 2 2 2NCHE pun-nc STOP Ruw
In
Cr Y, STATE- i) — .

ORCANIZATIVN

READ AT EN
ROSTER \
PILE [
0 IV AUN-RON]
PI1sPLAY
reEcrinAL
P\/T I v MESIACE
ROSTEC y

4
ORCANI 38T 10y,

‘ " J
oMM 1T TEE- Merser

CHECA reay

CC-ExT
4
‘ PERSer ~

DuPLA y MENCFR C
UNIDE I"F'H)
VATA . N
/

103

VSA-
13 J
RoOVTINE
FORElY-
RovTINE Ar
7 £
I -l
CITY-290n g PELHNE
= CPACES ‘ re
LocaricH

YUNTIL ciry
CRECERD Feveyy
‘OR NU rMeRE
‘REcogos T L

NO) 1
& <
crry-
ROUTINE
N

Ty
RE (ORD)

FounND
?

SroRe new
CITY RECCRY

.
<

Y

[

R |

CNeCINIR T

OREANIZATILY

e
~ OREANIR
.} P‘(l‘_‘
9

y

N <222nmcHE "

{¢

v

CReAT2aTI

—+’
FINO

ORLANIZA T vy
reccry

-

“F 6uND

JTCRE New

ORGCANICATRON
Re (onrp

A

\,

Mové vara ro
YANE -Freg
STCRE NAare -+,
TNSERT NI Pns
ENIQ C ”‘/’NM"'-Q!
ORCAN -NAME (pr

{ TO tWn-terme

104

‘VARY
COMMITTFEE- “IND FRCH
INSERT 'y JG©
rnky CNVM-(eMM
Ci-Exir :
STORE ~
¢C-cermmi
START
cLry — RUvTENE
y
FIND wNexr
CrIry RewerR)
QF STAle Ok
(()udrky
tlo
YES
CET
Y
<
FHND

105

CTART
cermirTll cg

TYPE-ID
= "¢

|] 0‘:"‘“

Y

STorc
R-tc™MM

cc-e4)T

START

‘ﬂrul’lt! =
trERT

UM -10617 (£P0
| %
rers Frp

DATA T0NANE =
ROMEN-REC

FINO RCAMTFe~KEC
wilh OAragas

ES

sy
STORE Nadre-pésice -
REC

DATA c MaMe -~
R-(cripq-tec

= IHD R ~AeUTIF G
WITH BATARASE KE y]
SICRE NAME
K-{(¢1-K€c

DATA To RANE<

G ROour-REC
NP (RcvP -REC
wilh DATABAE KEY

1TORE MM - kor—
nNEc

@
_,@
@

DATA Jo MNlMe-
G -tc1M-REC

FIND GRoyp-
W irIce
Mt T0 DAIABAYC KEY

STWRE

e C

NAME - ¢ (awy-

*

OISPLAY
TERMINAL
NMIESALE

106

START
FOREICH- Rl IHE

CovHTRY ~IANT
1o
STATE = COvHIRY

{0 N"y~
LAl 2
LPALEY

"2231NoNE’
,o
§r A TE-(uuNTRY

FiNO
STATE-(WNIRY-
Re ¢

FOvND ye s

HD

Stuec
STATE ~(c+tIRY
-REC

i
.4 <

‘ Erlp ’

107

STALT
LeFr-s0enT

I re Reai fro

SPA(LS /feiD £0O
Tee - tQ

EOr Ml 1ecio-10

OLp Lter(ynv)
e
NCw-LETENnNT)

1Y I
hevrll , S M

¢

I, DA YE§
No

J

7T START
Pe KON - mit MBER

LAST-LN 1L LA 1209
FIRM =Lt 1¢ FindT- 1AM
MioOLE -ty 75 i tomE
TETeg -1 jorrree

1£gEﬁEW'lD re]
R-(vﬂN—Iof’ﬂ-J

RGSTER-
(cmﬁg\r re e

/

END

HEw-IU o

RusTHER-1DEN T START -
Puri-stN-ReslER

S

K o 1o
g CoM-Tim (RT-0)
NEw-1p To DATs 10 RCITEC-ReC
G-torIM-toenr
LEFT -I08MF
HEW-TD 1o rnev
- RovP-IDENT Li-fcair
< K % '
LI-Cxirl STORE RosrfFe-acc
DarABAsg key
SAvep
START
ORGANIZATION~
M r13F A
END

FIRST~LINC To
NAILM

“ORGAN " TU
riree

\
(EMD)

108

START
STORE~(=COMH

TN
e ~KImD (RN r)

OATA TC
(RovP-CCMMITTEE

Y

LERT =LUNT
1.1{%

LE-Exr

Y

SToRe CRuve-
wrMrtl1EE
SAVE DATACAI

rney
START
STORE - G ROVP

hc P" ro

cort-H1Ho (RC-mvt)
DATA 10
revP-REC

Y

LEFT -LoenT
Thrv
LI-EXAIT

Y

SToR L

(,R‘;JP'RSC

s AvE DATABAIE
KEY

END

START
STenf -P- (09

ak(' ,,c
(e gy (K- rt)
OATA To

R-OMMITTEE

Y

LEFT-toenT
THRV

LI-EXIT

STeRE

R-CoMMITTEE

SAVE DATABAY
hey

START
UsA-RovTINE

CERUNAH LU
(cunNIRrRY

STA/'[;-[JL"U’ ‘"
STATA

Rec

FiNQ SIATF-(urliny-

HO

STORE
STATE ~(CoNIRY -
RFC

vES

109

\ <

APPENDIX D

DOCUMENTATION AND FLOWCHART

FOR UPDATE PROGRAM

110

DOCUMENTATION FOR UPDATE PROGRAM

The program UPDB.CBIL. is a COBOL program intended
for on-line updating of the data base. It can add a new
record for a member (either a person or an organizational
member), roster, group, or committee., It can modify any
field in the record of an existing member, roster, group,
or committee, with the exception of the field used for
the internal location number of a roster, group, or
committee. It can delete the record of a member, roster,
group, or committee.

The program runs under the exclusive update
mode. As the program runs it creates separate disc files
giving the additions, deletions, and changes that were
made during a particular run. The files are ADDED.DAT,
CHANGE .DAT, and DELETE.DAT.

The opening paragraph of the procedure division
opens the output files and the areas of the data base, and
performs HEADER-ROUTINE (line 97000) which writes the
headings of the output reports.

The beginning of every group of transactions, {i.e,,
transactions involving one particular entity, starts with
the paragraph WHICH-UPDATE (line 10500). WHICH-UPDATE

starts by displaying a message explaining the types of

111

updates available to the user, and asks the user to enter
the character which identifies the current choice., An
available option is to enter E to end execution of the
program. The routine QUESTION-ANSWER (line 99880) is
then performed. QUESTION-ANSWER 1is used whenever the
user is to input a one-character item from the terminal.
The routine moves the item to the data field TYPE-UPDATE,
which is then checked for the value of the item. In

this case TYPE-UPDATE is first checked to see if the
item is a valid one. If not, a message to that effect

is displayed, and control goes to the start of WHICH-
UPDATE. 1If three successive illegal entries are made,
the program ceases execution,

I1f the input character is valid, and not E, the
program branches to either ADD-NEW (line 12900), CHANGE-
OLD (line 39100), or DELETE-OLD (line 62500) depending
on whether the update is an addition, modification, or
deletion. 1In each case the user specifies one of three
possibilities: the update is for a person member; the
update is for an organizational member; or the update is
for a roster, group or committee. Thus there are nine
major independent branches in the program. They are
independent in the sense that the program never branches
from one to another except for the purpose of executing

particular lines of code via PERFORM commands. This

112

documentation will examine the three types of additions,
followed by the three types of modifications, followed
by the three types of deletions. Descriptions of per-
formed routines which are not in one of the nine major
branches are in alphabetical order following the

descriptions of the major branches.

NEW-PERSON (1line 14600):

This paragraph starts the code used for add-
ing a new person member to the data base. It accepts
the last name of the person, calls the routine LEFT-
JUST THRU LJ-EXIT to left justify the terminal input
(all alphabetic terminal input is left justified with
this routine) and moves it to LAST-NAME. The paragraph
FIRST-AND-MIDDLE then does the same for the first name
and the middle name. TITLE-CHANGE receives the title
of the person and ADDRESS-ROUTINE the last three lines
of the label address. The address is not checked for
content, but merely moved to the appropriate fields of
NAME-FILE. USA is used to find if the new member 1is
located in the United States or not. Then NEW-USA THRU
ZIP-ROUTINE (line 69700) or NEW-FOREIGN (line 75800)
whichever is appropriate is performed. These routines
either find or create records for the associated cities
and states or countries. PHONE-ROUTINE and START-DATE-

ROUTINE accept and place in NAME-FILE the phone number

113

and starting date with the project, respectively, of the
new member. NEW-ORG-ROUTINE either finds or creates the
correct ORGANIZATION-REC record for the member. If there
is no organization, the individual is associated with

the record where ORGANIZATION has the value ZZZNONE

The lines of code referred to above, i.e., the paragraphs
FIRST-AND-MIDDLE, TITLE-CHANGE, ADDRESS-ROUTINE, USA,
PHONE-ROUTINE, START-DATE-ROUTINE, and NEW-ORG-ROUTINE,
have separate paragraph names because the same code is
used in other major branches, and is called by PERFORM
statements.

PLACE-INDIVIDUAL puts the member's record into
the data base. 1t stores NAME-FILE, connects it to the
appropriate city and organization, and calls CONNECT-
ROSTER THRU CR-EXIT (line 79100) which puts the member
on the appropriate roster, committee, and/or group lists,
Then PLACE-INDIVIDUAL writes the output report and

returns control to WHICH-UPDATE.

NEW-ORG (line 25000):

This paragraph starts the branch of the program
used to create a new organization member, and is very
similar to the branch starting with NEW-PERSON. An
organizational member has its name entered as a whole,
and the value ORGAN is given to TITLE. After accepting

the name, the program moves it to NAIM and ORGANIZATION

114

and checks to see if the organization is already listed
as an occurrence of the record type ORGANIZATION-REC.

If not, a new ORGANIZATION-REC record is created. Then
the program performs ADDRESS-ROUTINE THRU START-DATE-
ROUTINE (see NEW-PERSON), stores NAME-FILE, connects it
to the appropriate CITY-REC and ORGANIZATION-REC records,
peforms CONNECT-ROSTER THRU CR-EXIT (line 79100), writes

the output report, and returns control to WHICH-UPDATE.

NEW-ROSTER (line 26800):

This paragraph starts the branch used to create
a record for a new roster, group, or committee., It
starts by accepting the number used for internal identi-
fication, and performs NUM-RECEIVE THRU NR-EXIT (line
99605) which moves the input to the data item NEW-ROS-
NUM. The program then checks to see if the type of
input is valid, i.e., numeric and three digits or less.
If the input is valid NEW-NUM-CHECK THRU NNC-EXIT (line
39005) is performed to see if the identifying number is
already being used. If so, a message to that effect is
displayed, and control is transferred back to WHICH-
UPDATE. If the number is not in use already, the program
successively accepts the type, identifier, output code,
and description.

If TYPE-UPDATE is R the program stores ROSTER-

REC, performs ROS-COM-ADD-OUTPUT (line 37300), and

115

transfers control to WHICH-UPDATE. 1If TYPE-UPDATE is
‘the G the program performs STORE-NEW-GROUP (line 37700),
which either finds the record of the roster that the new
group is in, or returns an indicator saying that it
cannot be found. Then, if there were no problems, GROUP-
REC is stored, ROS-COM-ADD-OUTPUT is performed, and con-
trol is returned to WHICH-UPDATE,

If TYPE-UPDATE is C, execution continues at
ASSOCIATED-ROSTER with the program asking for the number
of the associated roster and then trying to find its
record. If a ROSTER-REC record with the input number
cannot be found, the program looks for a GROUP-REC
record with that number. 1If one is found, the new
entity is stored as a group committee within that group,
ROS-COM-ADD-OUTPUT is performed, and control is returned
to WHICH-UPDATE. If a GROUP-REC record is not found{ an
error message is displayed and control is transferred
back to ASSOCIATED-ROSTER. A maximum of three consecu-
tive incorrect inputs is permitted before the program
ceases execution,

If a valid roster number is input, the program
performs FIND-GROUP (line 78700) to see if the roster is
divided into groups. If not R-COMMITTEE is stored, ROS-
_COM—ADD-OUTPUT is performed, and control is transferred

back to WHICH-UPDATE. If the roster is divided into

116

groups, the program asks if the user wishes to have the
committee connected to a group. If not, R-COMMITTEE is
stored as above. If the user does so wish, the program
asks for the correct group number., Three chances are
given for valid input. 1If valid input is received
GROUP-COMMITTEE is stored, ROS-COM-ADD-OUTPUT is per-

formed, and control is transferred to WHICH-UPDATE.

PEOPLE-CHANGE (1line 41000):

This paragraph starts the branch which alters
the record of a person member. It starts by performing
LAST-NAME-ONLY THRU LNO-EXIT (line 68302), which asks 1if
the user wishes to enter only the last name or the entire
name. The data item NAME-FOUND is returned. If it is 2,
then there is no record to be changed, and the program
goes to WHICH-UPDATE. If NAME-FOUND is one, the record
has been found, and the program branches to paragraph
START-CHANGE (1line 43100). If NAME-FOUND is O, that
means the user wishes to enter the entire name. It starts
off by accepting the last name, first name, and middle

name of the person. The main difference between this

{
Y

start and the start of NEW-PERSON is that the message
displayed at the start here emphasizes the necessity of
entering the name exactly as it is currently recorded.
After accepting the last name, the first and middle names

are accepted by performing FIRST-AND-MIDDLE (see NEW-

117

PERSON). FIND-RIGHT-DUPLICATE (line 99930) is then
performed until either the record of the correct person
is found or there are no more records of people whose
name is the same as that entered. In the latter case
an appropriate message is displayed, and control
reverts to WHICH-UPDATE.

When the desired record is found, the program
saves the data base key of the record, and then asks a
series of questions where the user enters Y to indicate
an affirmative answer, and anything else to indicate
a negative answer. Before each question is asked an
appropriate message is displayed, then the question is
asked, and then QUESTION-ANSWER is performed. In order
the questions are:

Change name? 1I1f yes, perform NEW-PERSON THRU
FIRST-AND-MIDDLE, then perform NAME-ROS-CHANGE THRU NRC-
EXIT (line 94100), which makes the same name change on
roster, committee, and group lists. Then the correct
NAME-FILE record is found with the data base key to keep
it the current record of the run-unit.

Change title? 1If yes, perform TITLE-CHANGE
(see NEW-PERSON).

The paragraph ADDRESS-EXPLAN 1is started.

Change address? If yes, perform ADDRESS-
ROUTINE (see NEW-PERSON).

118

Change phone number? If yes, perform PHONE-
ROUTINE (see NEW-PERSON).

Change starting date? If yes, perform START-
DATE-ROUTINE (see NEW-PERSON).

Enter an end date? If yes, perform END-bATE-
ROUTINE (line 85190).

Then NAME-FILE is modified, and the paragraph
COUNTRY-STATE-CHANGE is started. The user 1is asked 1if
the country or state is to be changed. If not, the
program branches to CITY-CHANGE., 1If yes, the program
finds the current city (if there is one) and removes
the NAME-FILE record from the CITY-NAME-SET set occur-
rence it is in. The program then asks if the new
country is the United States. If yes, NEW-USA (line
68700) is performed, otherwise NEW-FOREIGN (line 75800)
is performed. NAME-FILE is then inserted into CITY-
NAME-SET set and the program branches to ORGAN-CHANGE.

CITY-CHANGE starts by asking if the city is to
be changed. If not, the program branches to ORGAN-
CHANGE. 1If yes, the program tries to find the record
of the current city. If the record cannot be found,
NO-CITY-CHANGE (line 62005) is performed, and the pro-
gram branches to ORGAN-CHANGE. 1If there is a record of
the current city, the program finds the current state or

country record, disconnects the member's record from the

119

current city, performs NEW-CITY THRU NC-EXIT (line
74500), and finds the current NAME-FILE record via the
data base key. The member's record is then connected to
the new city's record.

ORGAN-CHANGE asks if the member's organization
is to be changed. 1If not, the program branches to ROSTER-
CHANGE. Otherwise the program removes the member's name
from the current organization's list (if there is a
current organization), and connects the name to the new
organization by performing NEW-ORG-ROUTINE (see NEW-
PERSON) .

ROSTER-CHANGE starts by asking if the committee
or roster affiliations are to be changed, If not, the
output report is written, and control transfers to
WHICH-UPDATE. If yes, then a message 1s displayed which
says that deletions, additions, and changes in respon-
sibility will be handled in that order. Then paragraph
DELETE-ROS starts.

DELETE-ROS asks for a number of a roster or
committee (or group) where the member's name is to be
deleted from the list. ACCEPT-ROS-NUM THRU ARN-EXIT
(line 86300), which accepts the input number and identi-
fies the associated entity, is performed. If spaces
were entered, the program branches to ADD-ROS-CHANGE.

If invalid input is entered, an error message is displayed

120

and DELETE-ROS starts again. A maximum of three con-
secutive invalid inputs are permitted. 1If a valid
input is entered, the program checks to see whether it
is for a roster, roster committee, group, or group
committee, and performs either DEL-ROS-NAME, DEL-R-COMM-
NAME, DEL-GROUP-NAME, or DEL-G-COMM-NAME (line 91200).
Then it goes back to DELETE-ROS.

ADD-ROS-CHANGE performs BEGIN-ROS THRU CR-EXIT
(see CONNECT-ROSTER THRU CR-EXIT, line 79100) to add
the member's name to the desired rosters, groups, and/or
committees.

CHANGE-RESPONS acts similarly to DELETE-ROS.
It uses ACCEPT-ROS-NUM THRU ARN-EXIT to accept and
check the identifying number. If a valid number is
input, CHANGE-RESPONS accepts the new responsibility
and performs either CHANGE-ROSTER-RESPONS, CHANGE-R-
COMM-RESPONS, CHANGE-GROUP-RESPONS, or CHANGE-G-COMM-
RESPONS (line 88800). When there are no more inputs
the output report is written, and control reverts to

WHICH-UPDATE.

ORGANIZATION-CHANGE (line 55800):

This routine accepts the name of the organi-
zation, finds the appropriate NAME-FILE record (1if
possible), displays the name and the address, and asks

if the displayed organization is the desired one.

121

If not, it looks for others until either the desired one
is found, or there are no more organizations with the
input name. In the latter case a message to that

effect is displayed, and control is transferred back to
WHICH-UPDATE.

When the correct record is found, the program
asks 1f the user wishes to change the name. If not, the
program branches to NEXT-QUESTION. If yes, the program
looks for the associated ORGANIZATION-REC record, and
if there is none, one is created. The new name is
accepted, moved to NAIM and ORGANIZATION, NAME-ROS-
CHANGE THRU NRC-EXIT (line 94100) is performed, and
ORGANIZATION-REC is modified.

NEXT-QUESTION starts by performing ADDRESS-
EXPLAN (see PEOPLE-CHANGE). Then the program asks if
the country or state is to be changed. If not, the pro-
gram branches to CITY-O-QUESTION. Otherwise it removes
the member's record from the city list it is on, per-
forms either NEW-USA (line 69700) or NEW-FOREIGN
(line 75800), and puts the member's record on the new
city list. ORG-ROS-CHANGE (line 62410), which takes
care of roster and committee changes, is performed,
CHANGE-OUTPUT-REPORT (line 62100), which writes the
output report, is performed, and control is transferred

to WHICH-UPDATE.

122

person member. It starts by performing LAST-NAME-ONLY
THRU LNO-EXIT (line 68302). If the data item NAME-
FOUND is 2, there is no record of the person, and the
program goes back to WHICH-UPDATE. If NAME-FOUND is 1,
the record has been found, and is deleted. If NAME-
FOUND is 0, the program continues by performing NEW-
PERSON THRU FIRST-AND-MIDDLE. FIND-RIGHT-DUPLICATE
THRU FRD-EXIT (line 99930) is performed until either
the correct record is found or there are no more
records of people whose name is the same as that input.
Then either the record is deleted and DELETE-REPORT-
ROUTINE (line 67600) is performed, or a message indi-
cating the record could not be found is displayed.

Then control passes back to WHICH-UPDATE.

ORGANIZATION-OUT (line 64700):
This works exactly as PEOPLE-OUT, except

ORGANIZATION-CHANGE is performed at the start.

ROS-COM-OUT (line 65200):

This branch starts by asking for the identi-
fying number, and then performing ACCEPT-ROS-NUM THRU
ARN-EXIT (line 86300). Then if a valid number is
entered, the appropriate entity is deleted, DELETION-
REPORT-ROUTINE is performed, and control is transferred

to WHICH-UPDATE.

124

CITY-O-QUESTION is used to check for city
changes when the state or country is not changed. 1Its
logic is very similar to CITY-CHANGE in the PEOPLE-
CHANGE branch of the program. The main difference is
that where CITY-CHANGE branches to ORGAN-CHANGE, CITY-
O-QUESTION performs ORG-ROS-CHANGE, CHANGE-OUTPUT-REPORT,

and branches to WHICH-UPDATE.

CHANGE-CODE (line 84685):

This branch is to change one or more fields in
the record of a roster, group or committee. It starts
by asking for the identifying number, and performs
ACCEPT-ROS-NUM THRU ARN-EXIT (line 86300) to check the
validity of the input, find what type of entity the
number identifies, and make the correct record the
current record of the run-unit. If the input is wvalid
CHANGE-CODE gets the record and asks in turn if the user
wishes to change the type, identifier, description, and
output code. If at any time the answer is no, it
branches down to the next question, otherwise it moves
the new data item to the appropriate fields of all four
types of entities. At the end it modifies the current
récord, writes the output report, and transfers control

to WHICH-UPDATE,

PEOPLE-OUT (line 64100):

This branch is used to delete the record of a

123

ALPHABETICAL LIST OF ROUTINES WHICH ARE NOT CONTAINED

WITHIN ONE OF THE NINE MAJOR LOGICAL BRANCHES

ACCEPT-ROS-NUM THRU ARN-EXIT (line 86300):

This routine accepts an identifying number,
checks its validity, and (if the number was valid) finds
the record of the appropriate entity. It moves an
indicator to the data item R-FLAGG to tell whether the
input was spaces, not valid, or the type of entity if

the input number was valid.

ADDITION-OUTPUT-REPORT (line 78605):
This moves and writes the name and address

lines of a new member on the addition report.

CHANGE-G-COMM-RESPONS (line 90000):

This performs FIND-G-COMM-NAME (line 93800)
until either the appropriate name is found or there are
no more names to check. Then if the name was found,
the responsibility is modified. Otherwise an error

message 1s displayed.

CHANGE-GROUP-RESPONS (line 90600):

Almost identical to CHANGE-G-COMM-RESPONS.

CHANGE-OUTPUT-REPORT (line 62100):
This moves the name to the output line, writes
the change report from the output line, and then moves

spaces to the output line.

125

CHANGE-R-COMM-RESPONS (line 89400):

Almost identical to CHANGE-G-COMM-RESPONS.

CHANGE-ROSTER-RESPONS (line 88800):

Almost identical to CHANGE-G-COMM-RESPONS.

CONNECT-ROSTER THRU CR-EXIT (line 79100):

This routine is to put a member on lists of
rosters, groups, and/or committees, It starts with a
message to that effect. The actual process starts with
paragraph BEGIN-ROS.

BEGIN-ROS asks for and accepts the identify-
ing number, and then performs NUM-RECEIVE THRU NR-EXIT
(line 99605) to get the number to the data item NEW-
ROS-NUM. If the input is valid an appropriate identi-
fier is moved to R-FLAGG, and the program branches to
ADD-RESPONS. Otherwise an error message is displayed,
and the program goes back to BEGIﬁ-ROS. If the input
is blank, the routine ends.

ADD-RESPONS accepts the responsibility, checks
R-FLAGG for the appropriate type of entity, moves the
data to either ROSTER-RESPONS, R-COMM-RESPONS, GROUP-
RESPONS, or G-COMM-RESPONS, depending on R-FLAGG, and
stores either NAME-ROSTER-REC, NAME-R-COMM-REC, NAME-
GROUP-REC, or NAME-G-COMM-RESPONS. Then it branches

back to BEGIN-ROS.

126

DEL-G-COMM-NAME (line 93400):

This performs FIND-G-COMM-NAME (line 93800)
until either the appropriate name is found, or there
are no more names. If the name is found NAME-G-COMM-REC

is deleted.

DEL-GROUP-NAME (line 93100):

Acts the same as DEL-G-COMM-NAME,

DEL-R-COMM-NAME (1line 92400):

Acts the same as DEL-G-COMM-NAME .

DEL-ROS-NAME (line 91200):

Acts the same as DEL-G-COMM-NAME .

DELETION-REPORT-ROUTINE (line 67600):
This moves the report material to PRINT-LINE,

writes the deletion report, and then moves spaces to

PRINT-LINE.

END-DATE-ROUTINE (line 85190):

This routine displays a message explaining how
to enter an end date, asks for and accepts the date,
performs LEFT-JUST THRU LJ-EXIT (line 68400), moves the

data to END-DATE, and replaces spaces by zeros.

FIND-AND-PUT-IN (line 96920):
This tries to find the desired STATE-COUNTRY-
REC record. 1If it cannot be found, the routine creates

a new STATE-COUNTRY-REC record, and moves 1 to the item

127

NOSTATE as an indicator that it did so.

FIND-CITY (line 74300):
This finds the next city belonging to a
particular state or country, and then gets the record

if the find was successful.

FIND-G-COMM-NAME (line 93800):
This finds the next NAME-G-COMM-REC record of
a particular group committee, and if successful, gets

the record.

FIND-GROUP (line 78700):
This is to find if a particular roster has
groups. If it does, 1 is moved to FOUND-GROUP as an

indicator.

FIND-GROUP-NAME (line 93100):

Acts the same as FIND-G-COMM-NAME.

FIND-R-COMM-NAME (line 92400):

Acts the same as FIND-G-COMM-NAME.

FIND-RIGHT-DUPLICATE THRU FRD-EXIT (line 99930):

If the item TEMP-IND has the value zero, the
routine just finds NAME-FILE record. If there is none
to find, the routine stops. If there is a record, the
routine gets it, displays the name and address, and
asks if the record is the one desired.

If TEMP-IND is not zero, indicating this is a

128

retry, the routine looks for the next record which
duplicates the input name, and acts as described in

the previous paragraph.

FIND-ROSTER-NAME (1line 91600):

Acts the same as FIND-G-COMM-NAME.

HEADER-ROUTINE (line 97000):
This routine writes the headings for the three

output reports.

LAST-NAME-ONLY (1line 68302):

This routine asks if the user wishes to enter
only the last name of the member whose record is to be
found. If not, the routine ends. If so, NEXT-LAST-
NAME THRU NLN-EXIT (line 68378) is performed to find the
correct record, after the routine has accepted the last
name, and created a dummy record. If the name is
found, 1 is moved to NAME-FOUND, otherwise 2 is moved to

NAME-FOUND. Then the dummy record is deleted.

LEFT-JUST THRU LJ-EXIT (line 68400):

This routine tests the item NEW-NAME character
by character, When it finds the first non-blank charac-
ter, it moves STOP-NUM successive characters, starting
with the first non-blank character, from NEW-NAME to

NEW-LEFT, where they will be left justified.

129

NAME-ROS-CHANGE THRU NRC-EXIT (line 94100):

I1f the name of a member was changed during a
run using either the branch PEOPLE-CHANGE or the branch
ORGANIZATION-CHANGE, this routine is used to find and
modify all the associated NAME-ROSTER-REC, NAME-G-COMM-
REC, NAME-R-COMM-REC, and NAME-GROUP-REC records.

NEW-CITY THRU NC-EXIT (line 74500):

This routine accepts the name of a city. Then
if NOSTATE has the value 1, indicating it is a city in
a state or country whose record was just created, the
routine creates a new CITY-REC record for the city.

If NOSTATE has any other value, the routine performs
FIND-CITY (line 74300) until the appropriate CITY-REC
record is found, or there is no CITY-REC record for the
input city. In the latter case NO-STATE (line 72100)

is performed.

NEW-FOREIGN (line 75800):

This routine asks for and accepts the name of
a country, an& tries to find the associated STATE-
COUNTRY-REé record. If the record is not found NO-STATE
(1ine 72100) is performed. Then NEW-CITY THRU NC-EXIT
(line 74500) is performed.

NEW-NUM-CHECK THRU NNC-EXIT (line 39005):
This routine is used to check an input identi-
fying number for a new roster, group, or committee to

130

see if the number is already being used. If the number

is being used, BN is moved to R-FLAGG.

NEW-PERSON-ORG (line 77900):

When a record for a new person is added to the
data base, or whén the organization of a person with an
existing record is changed, this routine tries to find
the record of the new organization. If the record

cannot be found, a new ORGANIZATION-REC record is created.

NEW-START (line 77200):
This routine moves the starting date to START-

DATE and replaces spaces by zeros.

NEW-USA THRU ZIP-ROUTINE (line 69700):

This routine moves ZZUSA to COUNTRY, asks for
and accepts the name of the state, and moves it to STATE.
Then it tries to find the associated STATE-COUNTRY-REC
record. If the record is not found, NO-STATE (1line
72100) is performed. Then NEW-CITY THRU NC-EXIT is per-
formed.

ZIP-ROUTINE asks for and accepts the zip code,

and moves it to ZIP.

NEXT-LAST-NAME THRU NLN-EXIT (line 68378):
This routine starts with a dummy record and
finds the next NAME-FILE record. Then it displays the

name and address of the member. This process is repeated

131

until either the last name of the member does not match
the desired last name (stored in data item TEMP-NAME),
or the user indicates that the correct record has been

found.

NO-CITY-CHANGE (line 62005):

This routine is used when a member's city is
to be changed and there is no current city. The routine
asks if the city is in the United States. If so, NEW-
USA (line 69700) is performed, otherwise NEW-FOREIGN
(line 75800) is performed. Then the member's NAME-FILE

record is linked to the record of the new city.

NO-STATE (line 72100):

This routine is used as a check against a mis-
spelled state, city, or country. It asks for and
accepts the new entity. If the entity is either a state
or country FIND-AND-PUT-IN (line 96920) is performed.

If the entity is a city FIND-CITY (line 74300) is per-
formed until the record of the city is found, or there
are no more records to check. 1In the latter case a new

CITY-REC record is stored.

NUM-RECEIVE THRU NR-EXIT (line 99605):

This routine is used to move an identifying
number for a roster, group, or committee to the data
item NEW-ROS-NUM. The input must be numeric and three
digits or less. Should either of these conditions be

132

violated, B is moved to the item BAD-INPUT. 1If the

input is valid, it is right Jjustified in NEW-ROS-NUM,.

ORG-ROS-CHANGE (1line 62410):

This routine asks if the roster affiliations of
an organizational member are to be changed. 1If the
answer 1s yes, DELETE-ROS THRU ADD-ROS-CHANGE (see

PEOPLE-CHANGE) is performed.

QUESTION-ANSWER (line 99880):
This routine is used to move a one-character

input to the data item TYPE-UPDATE.

ROS-COM-ADD-OUTPUT (line 37300):
This routine writes the output report when a
new roster, group, or committee is added to the data

base.

STORE-NEW-GROUP THRU SNG-EXIT (line 37700):

This routine 1is used when a new group is added
to the data base. The routine asks for and accepts the
roster number of the roster that the new group is con-
tained in. Then the routine tries to find the
associated ROSTER-REC record. If the find attempt is

successful, the value 4 is moved to KOUNT.

133

START
VPDATE

oren

OPEN ourruT

FILES

OATABASE

AREAS

Y

HEADER ~
ROVTINE

i

\

VSER
ofrTiON S

M ESSACE

Y

 S——|

&uesrmm~
ANS WER

3T

APPROPRIE
HESAC

0
£

‘;/

yes

134

CLO3E FlLES

CLCSE
DATABAIS

ARE AS

Yy

STOP RuN

DIS PLAY
ADD
MESSALE

1

QuesTion-
ANSWER

Gf

APPROPR LATE
MFESSAE

D1s PLAY
Mo DIFY
MESSACE

Y

QUESTION -
ANSWER

ROSTER

APPROPRINTE
MESSAGE

Y65

e C

135

pis PLAY

OFLETE
MESSAEE v
ACCEPT
Y LA NAFE
QUESTION-
NHIWER FRU M TERMINA

4

START
FIRT-ANY- Mo 6

Accep]
FiRAT NANYF

ropec WANE
FROM TEfMmiL

1 4
START
TITLE -CHAmgE

ALEPT TiLe
o
rgkﬂlﬂﬂl—
ALPROIRINE ,
MESIACE 1
STAKT

PPRESS- ROvIINE

'hCLEPr
sECend Ling
roipg +tnG

FLIURTH LINE
eF MAI YN
ADPRES)Y

Y

@

136

DIsPLAY

VSA oR
NeT

I

ng; reenrt
ANIWER

|

PACHE RoIINE

INATL

PHUNE
NuMBE R

L 4

fTART
START-DATI=Roon

Y

ACCeErT
‘rﬁﬁr
OATE

id

NEW-START

NEW -VIA TREV
21P- ReviINeE

START

AfPRoPRIATE AN
MESSAFE NO
NEw - foke (. 1y
JEs
HO ¢

y/

NEW '01\“' KO 2AE

A(Lt‘/"r

ORGANI 2ATICN

NE W PRIy
0R G

137

y

Wamenc: 4,
OREANIZATICry
F&NO
ORC AIIAT i A

R

“ [£.)
fw-od¢ - ROVTIAE

STOAC NAM-Fag

1rIERT NAME-Firb
INTO

CeTY-MAMt -Ur

0 RGAN-WANESET

CoNNECT~
ROSTER

rhev

CR-EXIT

Y

AbpiTion -
REPORT

[Acccr T NRFIL oF
OAG ANMIRATICN
Move 7o HAIM
QREA mivared
pLND cRYAMBAT AN -REC

NV

STORE
opc A iEAIIT
Rec¢

oRean’ jo r1rtk

AODRFU~A‘~'-':'

THRY

START-UATE "
poviing

STORE AAME -FILE
TIERT N AMHE-tae
,nld
oﬁ,nn-~4r1fﬂfr
Ty ~MAME-LET

Y

CONNEC T~
ROSTER
kY

cp-£xXT

Y

[ADPITION
i oI PV i
L RpEPURT

138

~ D

]
DISPLAY New -/ =chet
ME SACE P&y
ACEPT NVMBER NHC-EXIT
y puPLAY
NVM -RECEIVE] Yes [MESACE
THRY
NR-EXIT
ACCEPT DATA,
YES MovE To Fi€elsor
ROSTER=REC) LRS-
@ ree, R-unm’:rrfe,
¢ RCvP - oMMITEY
NO
APPROPRITE STORE
MESIAEE ROSTER-REC
oAarsd 1c arp/r
PlLe
- Y
03-CUrIADD~
yes y Gl AT

SToCe -8 W - 6RO

ACCEPT
ASSottarsp
RUSTER
Hv r1BER
¥ _
Ny M-RECFae
TheRJ
ne -EAT

139

FINP- ¢ROVP

MESSAGE
YE{ vig R ""Aﬁlf
Y HMqITTIEE
M G RUVS
§roRE ¥
R-~woMrITTEE Que st gy
DATA [o ouipur ANSWE R
v
RO -0 -400-
ovifv I
FIND
RWTER-RBC
7 STURE

ROyl TEs
OAlIA IV etP. [

Ros ~lor1-400

wouIPu
FIro
¢ RPOVP-REC
STORE Geov/ ~
I8 amrirreE RS~ ot~ Asp
vATA N vurhr OUrrVT‘
NV

140

APPROPAIATE
MCSS ACE

H0 C
I

keau&‘r
G RovP
NeMBER

Y
NU[-RECEIVE
THRV

NR-EXIT

1

APPRUPRM
MESSACE

HIRD
¢ HANCE
¢

FIND

G ROVP-REC

NO

APPROPRIATE
MESSAG E

~—7

141

YE S

vé

TORE
GROVP-COMMTTE B
DATA TO

ovrTPer

Y

0%~COM-ADD
oOuUTAVT

LAST - NAME -
onty
rHeJ
LNO-EXIT

LAST
NAME ONLY

i
ofrzlb

FOVND
RE CORD

Accerl LAST
NAME FROM
TERMINAL
Y e
FIRST-AND-{ | | sg¢€ '
M10DLE @ .'
L N
,,,,,, ¥ IS
: TUNTIL CCRRECT
P ino- Rtehr- "RECORD FouAD
oupub‘\ff OR N0 MORE
“f| rHR DUPLICATE S
N|FrRo~E0iT ro (MHEck
. - - *

SEE

SAVE DATABASE
KEy

ng-h‘l-“ﬁ
THRY

.‘ Fm’r-hﬂl"
MIpOLE

: Y
dINAME-RCS =
|| ¢ HAREE

! reu
HR(-EIIF

TITLE -
CHANEGE

ADPRESS =
rCevrine

Y
RIP-RCVTINE

CHANEE
ADURESS

- N

PHONE -~
RUvIINE

¥

START ~DATE -
Q(ufl”E

142

Eno-oAre -
RouvTIAE
MODIFY
NAME-FILE

C HANGE
COUNnTRY oR

RotTER

P
Jx
oviPurl

REPORT

143

fﬁ'f \
Fino CiTY

RECcAD
y REMovE
MHAME -FIul
RROM
CITY"NAME-SET
My
PR
s |[NEW- '
VSA
NO)
NEw Y
FOREICN
INSERT
N AME-FItE
;NTO
CITY-NAHME-SET

. SEE

EINO CiTY
RECORD
Firf0 COUNTRY
REMWVE NAME~
rILE FROM
ITY-NAME -
o AME-SET
v
No-cir
4 NEW ~CITY
CHANGE THRV
NC-EXT
\
Y -
FlLe I1RTO

CITY-NAME-SET

a &l

FIND
ORCANIZATION-
REC

NEwW-0RG -
ROVTINE :

INSERT
NANME -FItE
. IAIC

L906A4~ﬂﬁﬁfdfj

START

TEPMINAL
DELETIE -ROS

MESSACE

A
o
%)

R]
pe T N—
HUMBE R

OF RPOSTER
por REMOVAL

b

ACCERT —£0 8-
ThRY

ARN ~-exr

REMCVE
YES | NAME -Fur
FROM

CRCAN-NAMCsE

¢ Y

7 HY rMegs
OELETIONS

TK
S0
HO

APPROPRIATE
MESSACE

Ye!

NAME

DEL-LROVE- 1}

DEL-G-(oMM- |
NAME

. START
Aw-ﬂﬂl‘{"‘”ﬁ£

[Adprriofis
/ MESS ACE

DEL-ROS- NAME]

ACCEPT MurtEeR « <IO

poR (HANES
oF RESFENSIBRITY

Y

ROITER

(CMMITTES OBL-R- (A

NAME

A((EP T~ROS~
N
ThRY

ARN-EXT

AR

ne TQ

@

145

WwWRITE~

our Py’
RePORT

es

o
APPROFRIATE
MESSAGE

YE !
4
No
C

ACCEFT NEW
RE,pons/oun‘/

(HANGE -
RCSTER -

ReEspons

(HANGE -
R~ (oMM =
RNESPONS

JoO

(HANGE -
G-emrt”
RESPINS

CHANVE ~
¢ ROVP T
RESPONS

146

@

K Srarr @
OR“ NI 2ATIOY =

ACCEFT NAMe ‘ FIpp
o F ORGANITATKW OR ¢ AMIRATKA -
FIND RECORD ; R €

164
tTORE
TERMINAL one::('““‘”‘ Y
MESSACE FRILer RAME-FILE
NG cRMN-MH&
Y —

ACCEPT HEW-nArk
SANIRATICN
FIND NExrT ro ok

OUPLICATE 4601 FY
oNGANIRATICH - REC

1©

PAVE DATABAIE
Key
vl rtAaY MESIALE

T KA

STATE of
(CV‘I;YR'/

APPRESS - ‘ree

ELPLAN - {A) .

147

OR¢-ROS~
CHANEE

d

C HANCE -
ouirul -
RE RORT

9
%

FIND ciTY
RECORD

. —
KEMOVE
"AHE'F’LE
FRoM
CIT-NAME-SET

>

L 4

NEwW -FogEl

YE!

0
1€S

Ne

©

148

TNSERT MANE -
Fise IHILC
Cily -HAMESET

Y

ORC ~kOS -
CHANME

¥

CHANCE -
ouipvl -
REPORT

@
@

F[ND ciry
RECORD
FINY ((,'.JHTRY
ReMcve
NA""-F“E rdvM
CITY-MAME-SET
NU ¥
1 NEW=-CITY
Nu=-cxry-
CHANGE 2
TNIeeT NAIME v ¢
riTo CETY -mAres
ser
Y
/ T

'KJ" B

ORG-ROS~
CHANCGE

r

C RANCE™
ovIiPvT ~
REPORT

ACCEPT MNUMBER
EROM TERMINAL

MESSACGE

v

ACCEFT -Roy

NuM
rTHRY

ARN-EXIT

ACCELr HEW IV
YES | Meve To R-r'iff'
¢ -1yee, R-teriM-
rire, ¢ -crm-1we

NO . Y

ce¥

Foative ey A< T Aew

$penTFIER | MovE To
APPRCPRIATE
PisLDS

&
i

ACCEPT NEW

MOVE reu

APPROPRIATE
FIELDS

Y

ACCEPT New
MoveE T
APPRCPRIATE
FletPs

N

ya
-

MODIFY FECCRD
MOVE PATA TE
Du" PUr

wRrIITE REPLRT

L 4

)

149

L AST-NAME- ORCAMBATICN (-'Vré'é

orfrl-ﬂ‘ﬁu C HANCE ’
JLNC-gqT |

Tremo-menr= [] i ™ Recors
DuUPLICATE - FouND oR
LAST rHRu No ricre
NAME ONLY PRP-EXIT OVrLICArES
- — o (HECK
qes |PELETE
RECORD RECRD
2
DELETrICH -
-PER
NEWH:U sof REPORT .
R:; AND - LN ROVTINE NG PELETE
FIRST T S6r : v
MIDDLE s @ | RE(CRD
; EIND-RICHT - ! vTIL RECOR D Y .
DuALICATE L FOUYAND oR PDELETION -
THEV " NO MORE REPORT -
FRD-EXIT FOUPLICATES RQVT INE -
e - s TO CHECH
%
DELETE MESSAGE
YES
REORD
‘P v
MESSAcE VELETION -
RE PORT - A
ROUTINE

150

JECMIN AL |
MESSACE

Y

ACCEPT~ROS -

nvM
rRRY

ARN-EXIT

INVALID
Hfol

ME SIAEE

GET n€ECorp
DI PLAY
DE SCRIPTICN

GET LECORD
Oi1s PLAY
DESCRIPTICN

GET FEoRD

| DISPLAY
DESCRAPTIION

GET REcogo

DisPLAY
DeESCRIPTICH

151

pecEre

RECCRD
mMewve DA TA 1

oviIPu?

¥

PELFTen .
REFORT -

Revritng

A(((:Pr
Hut BE R

STALT
ACCEPT-RCS-NUM H

_

“ME" ro
R-FLACE

M

NUM - Recewe
rhRv
NR-£xIT

YEs

APPROPRIATE
MESSAL €

O

YES

FtNo
ROSIER-LE¢
yes
MO
Fing)
R-(oMMITEE
JES

NO

Finp
CRovP-(EMMIL T EF

ko' 10]

R-FLAGC

“tc” TO
Y65
R-FLAGG
1]
NO
] @
ROVl ~-REC
yéS$ “eP” To
R-FLAGG
NO
s PACES
ro R-FLALE
v
c].)

ARN-EqiT

152

L4
\J
]
+

-

START
ApITICH =OuTP
RE[O

ul-

MovE NAME
weITE REPORT
Move AOIRES

START
CHANCGE -G (et -
RESPONS

FIND=(~-
oMM-
NAME

PR R

RECCRD
FOvHD

Ho
DISPLAY

MESSACE

J

-

T JNTIL CORRELT

NAME FOYAD

L OR MU MOPE
' TC CHECHK

(0

MODIFY NAMe-
G-(oMM- e C

'8

153

START
CRANGEE - ¢ RCVP~-
KES PONS

FIND~
GROvP -
NAris

CLuwTIL CoppeEcT

"NAME FounD
0R Mo MORE
TO cHELX

McoIFy
NAME ~6R0VP-
Rec

DiSFLAY
MESALE

) 4

END

STAR
changE-ovfvi®
Ropor

MOVE HAME
wRers ReraT

(END)

A

START
CHANGCE = R-(eM1M-

___ResPons

UNT]L CORRECT

FINO-R = NAME FovHD
coMr]- OR NO MOKE
NAME ro cHECK

Mol FY
NAME -R-(CMM-

REC

piSPLAY

MESSAGE

"8
Q
<

~

ENU

STAR
CHANGE =ROSTER-
RESpO NS

v _ UNTIL CORRECT
]

.‘*

: IND-

L[| FI ‘NAME FOUND
. RNOSTER - ! o 4o
! N A ME TOR NO MOKE

; & "yo CHECH

MODIFY
NAME =
NCSTER -
REC
DUFPLAY
MESSALE
[4
A L
END

154

START
connect - ROSTER

T ERMINAL
MESSACE

START
ECIN-RGS

ACCEPT NVMIER

NVM-REWEWE
rHRY

NR-ENT

., [arereRiaTE
B | MESIACE
N

FIND ROSTER-REC
THIRO

CHANCE
!
N l C l

“yvv TC
R-FLAL-(-

fFinD
R~wMMITITEE

3

NV

J€s |"m' ro R'Fuwj

L

FIND ¢ RovP -
COMMITTEE

FOUND

NO

JESI CC 10 RoFLAL(

FIND (LovpqlEC

APPROERIATE
MESSA(C

A

THIRD
~_ CHANCE
L ?

Ne

ESVCLOSE Fugs

CLOSE PAIABAIE
AREAS

155

Acceer]
Resrcﬁs:(;/ulrj

YES

S TORE NAME -
¢ roup —BEC

Y

)

SrcheE mAMe -
Neitew =R EC

5

STCRE NAMCE -
R-tuemre- #EC

S$T¢R¢ Nar: -
(NI K i {2

.

TSTARr
PEL-y-COMH - NAME

START
DEL-R-woMr- Ntk

vNT IL NAME
FING=(- (0MH oD OR
NAME NG MORE
Fc ¢HECH

PeELeETrE NAMC -
C-(eMM-NEC

TERMINAL
/ MESSALE
’/
L
¥ <
(Enp)

START
oeL-CROVO-NAME

FINO-~-¢RUVL-
NAME

O [y

TERMINAL
MESSAEE

unTie NAME
.FOVMD oR
Mo Mop € 0
CHECK

DEVETE MNAPME-
GRUvP-REL

£ ND

A

156

.\'
FIMD~ R -(el NTIL NANE
NAME Fouan oR
NC ™MoLE
re (HECH
FOounNpD YES (OCLETE NAME~R-
? (UMM -RELC
N+
TERMINAL
MESSACE f
‘__.w..{___.__a
EnND
START
DEL-RCS-NAME
V-ARCMTER :UN”L NAR:
Fie mRosi el FOURD oR
NANME NC MéRE
re cHECH
I YES{ocv 1 NaME-
FounD RGSTEN-LEC
?
Me
TERMINAL
MESSACE !
E N)

STAeT
DELRTISA-REFR -
__Revrine

START
Fino -Ary

WHRAT -87-13 te

o PRINT -2 I NE Fino NEST
e . -
CARIRATILA WRITE REPRT céézoss .

QFY-(WwNIRY-SET

NAIM 0 J
PRINT =L

wilitTC REPORT

4 < y Hv

p—
END N
START CTART
£ M0~ OATE - ROVIINE F D « = (CMN- N AM

1

F1Do NEtr NAME -

ALCEPT Fno VAIE
MueviE T DATA

LreM C-(OMM-RFC CF
RBFL ACE SPALE G- (CHMM-NAML -S€E 1]
2y RELO

FIND SraTlc - '

COuNTRY -REC

STOCE SIATE-
COUNTRY-REC
t ro HNOSTATE v

f

—
END

157

STAK STAET

FIND F!RST: FINR AELT NAM; -
¢ ROVP-REC R-(cMPi=REC CF
RECCRD) GF .
RESTER- ¢RCVP- R-ocrht-tare s
sEr
JES|) ro Fovitd-(Rue GET
RO /
USRS < Y
(END)
P IND- €ROVP -NAME
F#HD NEAT NAMC-
(ég-::‘;nitr FIrD NAME -FuE
¢ ROVP -NAME-SET
<
FIND NEar pupLiCATE
- NAME-rne
Fovap N
, FET 7 .
! GEr
Ho] j’ FOuND ES|otseu Ay wares,
<. - AVIRE SJ
_ ! AIK Rienr
END PERSCAD
Ne Y
Quesiton -
ANWER
v

Y

A

()

158

START
Funp-ROSTEC =
NAME

FIND MERT NAME AWK PT L A want |

OSTER~REC OF TC L AST-NANL
R TEM’-HAME
ROSTER - NAME- STURE MANE-Fag
ser DuriMy RE(6RD
S

ME&T-LAST

FOovnp Jes G' ET ThRv
7 NLN-EXIT
no
€ Y o

P Te Nﬂﬁr'-’f_mw
E”D Y63 [0t TE Uvmry

Find (ORRECT

START ’? !
H £ ADER~ RUVIINE E(oxD
¥ Mc
WRITE hWEASERS 3 To nAf-Fom
FoR o\m;:/;‘ bELETE DUy
REFOR T ECHAmAL MIFBAE

SA [%4
END LNC-EuT
START
S

TERMINAL
MESSAEE

159

fTART

START

LEFT-JUsT MAME RS ~(AN
i Fmbnﬂr T
[l ro FNB, INP AME ~ RESTER-WEC

A
OF N

NAML -RESTER-SET

¢rr
MAME 1t
v
FO NO ROSTER- HAML

MCOIFY

FINU NAME -4 ¢
/rn NATAAY nr)

ADD ' Tv FB

?m““-"' T e
FINU NEAT

NAME -R-(WMrlsep
LASI-LET(Fmu) :

{

!

NAME R-(6riP1- RE i
cF ff\

l

{

TO

LEFT-LET(IND) NAFTE T

R-tompri- HAMe

McO|F/
FIND NapMt T £
witn CAIABAY AEY
T T e
FIND ne aT .
NA‘A’((A‘v!'ﬁ‘b‘ /n
CF
NAME -(RCWHET]
|) 6er ;
Av 1t IcC an‘ (7 YE $ NYAME I, !
CRUVP SNALE |
rMcoiry

,TB

160

PIND NAFE-TiLe wott
DATARASE REY

A

V

SRR QUSRI

FIND NEAT
NAME-G-1eMi-Ri¢

[ad A
NAMC SO NET

GEr
HAME TO
(- ~(CMN-NAFIL

MOopIFY

Accerr

crry FRuHM
TERPUNAL

e L UATIL CLTY

F/N‘)-—(ITY C1s Fovap o
' ‘No MokC TV
CCHECK

161

; START
NEW= RORETCN

ro e
A((CN’

(O TRY
NAME

e M I’FRHINAL

NC(- EX]

¥

rFlno Srafe -
.l(c,,,.,'ty-ﬁ‘ﬁ

STORE CirY-REC @ !

~

—

s FART
NEW-puM-(HECE

NVMBER 1O
ROS - NUM, (- ~Awr,

R-(uripa-MNe™
¢ ert-a et

Y
Fino RUSTER -kct—J
\4@

A 9l

NO

FINO ¢ ROW-REC

FIND Gaved~
o ric L

Y€

NU
IND R-(OMMTE

-

NNC-FxT

£s l.‘e"..

TCR-FLAGCG

J

BN Ty R-FLACG

v

L. -

“On' Te R-FLAer

!

"B TC RFLAL

162

sTAeT
NEW-PCRSCH -0 (~

—

Lf(i -3 v”'f 7 .
ThAY |

LI - ar 1

NEW-LEET TO |
en AatzATIeN

Femg
CREANIRATIA-Cex

STCRE
ORCAMIPAILA &L

—_—

J

STARF
REW -START

IPA(ES T ww-LEPT
W TC SiCP-AN

A ZANA——
tEr'I- Jor
rHRV

cT-gur

Y
Nw LEFT e

START-OALL
RE I ALF SPALE
Gy ¢

T

(ewe)

END

STAST
NEW-yUsA

e

"3 2usA" TC
CounNTRY

¥

/\(C t;-o;ri 3 r,{yt
rncer
rERrin Al

pND ST4ANE ERUGIA S
Y 1

NEW-=CITY
Thiv

NC-EKIT

START
2P - RCIINE

APl

20 wE FRCr
TERMnAL

Mive ls 24109

v

Tsraer
NEsT-L AT -NANME
.

g

Fing Nt al

AT Tt
ﬂ‘:t(lf‘” o

ALFHA L T [(ASSET

~Founo
.
\ .
\/
NE
Y

Y.

£
,Y —* Cer

©

—

L AST -#hpe
N 1m0 -NAMY:
7

e ?Dun Ay

NAMNE

L.Auoﬁf;s
i i s

163

(NLN—;T:——\\)M__,,,,, e
—k—‘_*“ (

START
NO- CITY-CAANLE

/ MESIACE
fOARCLYY

N (Uh‘efhr
ary

([new -usa
jes || Thev

A RVAY, 210 -RLvTInE
’ |
NvY L

|

. . Fl”‘) NAMC-F ¢
wa'FCA(“'N Wt m"gn‘(s
i KeYy
Lﬁaomy
I «
[NSERT
NAME - (it L
INTC
CITY-NAME-SET

%

END

START
(NO—-STATE

r
I TERMINAL

MESSACK

l, P A Aj
l,\(tfrr NEw |
LCITY, STATE
LOR (VOINTRY

. |

P i"l LA TO Cualr
/S/TAFE NES | pi W -LEFT TCSIALE
\

R =
EFIND'AAO‘]
VN B
?

164

MEw - CF7 TO
STALE - (cuNILY

R

CAFIND-ANgPT- I
'i N !

V5 {

Fing-ciry

|
|

e

STCRE
CITY~CEC

v

vl

iy
v evnt)
cn Yg

\y

|
|
|
|
|

START
NUM-RECEWVE
gy 7¢ IND
SPACt i¢ NEw-RS -
nurl

y Te rng
o Te T EMr-raY

[Tl¥"rc JA0-INP7
IR

— - g i o =

AOD 1 TC TErP-m
Fry

87 i gao-wpur

beuurRaar | 0
FROM

FNB 1NV

T -1NO
LAST o TCFNE) 10
Nurt-2n(3n)

FXATINE
NEw -8R0 Her
Re it ALE SPALF

‘ rY 20

J

S1aer N
NC-F AT 1
--__/’

165

. ST ART \

S TAR r : s iCNE "":W~pg‘u,v'v
OR ¢-ROS- CMAE (\y)

1 ACCerr ROSTER

NHuMBER

£S [TeemmaL

Z RosTER L
\\{(f’%l‘ﬂdﬂ-‘ HE ss A('E NUH-K{CF“M [
™ 0 o rnRv |
v f NR-EAIT '
[DELETE-RA] |- Séc ' :

|

e e PrROPRUTE
AL | G YES /’T ‘
| [AppROSTMANE | MESSALE

oo e

MY
END | Fin0 RCsTER-CEC
s ruT' N
UE sTiol - ANSWE

~

ACCEFLT INPUT
EFTr-Juir
- THAVY /DISPLA‘/
: MESSACE j
LI-ExT / |
f /..-___._,»_-___,__‘_J-' ¢ T fcunl
N

Meve TO TYPE - ¢ f

vpoATE Y
SNHe-cnr
END
STALT
ROS ~Car A ~
Cul PoT

WhAT=-tl-ts Jo
PRINT -LINE
wRiTr -REPCRT

C ND

166

APPENDIX E

DOCUMENTATION AND FLOWCHART

FOR INQUIRY PROGRAM

167

DOCUMENTATION FOR THE INQUIRY PROGRAM

The inquiry program (READDB.CBL) is a COBOL
program designed to allow a user to interrogate the data
base concerning the data listed for an individual
member. The interrogation is to be done interactively,.
The program accesses the data base in retrieval mode,
hence can only read what is in the data base, and can-
not affect the contents of the data base.

The program starts by opening the areas of the
data base in retrieval mode, and then displays a
message describing what the program does, and how to
answer questions.

The next paragraph, called REQUESTS, actually
starts the questions asked of the user. The routine
QUESTION-ANSWER THRU QA-EXIT (line 10700) is used to
move the answers to questions to the data item TYPE-
UPDATE, which is then tested for the actual input. The
first question asked is whether the record to be checked
is for a person member or for an organizational member.
If the input is anything other than P or O the program
ceases execution. If P is input (or anything starting
with P), PERSON-MEM THRU PM-EXIT (line 12100) is per-

formed to find the record of the correct member. If O

168

is input (or anything starting with O), then ORGAN-MEM
THRU OM-EXIT (line 17100) is performed to find the
correct record. If the member's record cannot be found,
a message to that effect is displayed, and the program
branches back to REQUESTS.

If the record is found, the program asks if the
user wishes to see the associated geographical data.

If the answer is yes, the routine GEO-DISPLAY THRU GO-
EXIT (line 26000) is performed. The next question is
whether the user wishes to see the associated organiza-
tion. If so, the routine ORG-DISPLAY (line 10610) is
performed.

The user is then asked if the phone number, the
start date, and the end date are to be shown, Finally
the user is asked if a list of committees is to be dis-
played. If the user wants the list, ROSTER-LIST THRU
RL-EXIT (1line 22000) is performed. Then the program

branches back to REQUESTS.

ALPHABETICAL LIST OF ROUTINES

GEO-DISPLAY THRU GO-EXIT (line 26000):

This routine first tries to find the city of the
member. If the attempt is unsuccessful, the routine
displays a message to that effect, and ends. If the

city's record is found, the routine finds the country,

169

and checks to see if the country is the United States.
If it is, the country, state, and city are displayed.
If the country is not the United States, the country

and city are displayed.

LEFT-JUST THRU LJ-EXIT (line 20700):

This routine is used to left justify input names.
It looks for the first non-blank character, and start-
ing with that one, moves the input, character by

character, to the data item NEW-LEFT.

ORG-DISPLAY (line 10610):

This routine tries to find the member's organi-
zation. If the attempt is unsuccessful, a message to
that effect is displayed. If the attempt is successful,

the organization's name is displayed.

ORGAN-MEM THRU OM-EXIT (line 17100):

This routine asks for the name of the organiza-
tional member whose record is to be interrogated. LEFT-
JUST THRU LJ-EXIT (line 20700) is used to left justify
the name. The name is moved to NAIM, and the routine
then tries to find the associated record. If the
record cannot be found, the routine ends. If the record
is found, the name and address are displayed, and the
user is asked to verify that the correct record has been

found. If it has. the routine ends.

170

If the user indicates that the correct record
has not been found, the routine looks for a record of a
member with the same name. If there is no such record,
a message to that effect is displayed, and the routine
ends. Otherwise, the above process is repeated until
either the user indicates the correct record has been

found, or there are no more records to check.

PERSON-MEM THRU PM-EXIT (line 12100):

This routine acts just like ORGAN-MEM THRU OM-
EXIT. The only difference is that the member's name
is input in three parts, first the last name, then the

first name, and then the middle name.

QUESTION-ANSWER THRU QA-EXIT (line 10700):

This routine is used to move answers to questions
posed by the machine to the data item TYPE-UPDATE. The
routine looks for the first non-blank input character,

and if it finds one, moves the character to TYPE-UPDATE.

ROSTER-LIST THRU RL-EXIT (line 22000):

This routine is used to display the description
of any roster, group, or committee that the member is on,
along with the member's responsibility on that roster,
group, or committee,.

The routine starts by looking for the member's

name connected to a roster. If it finds such, it

171

accesses the roster record, displays the description

of the roster and the member's responsibility, and looks
for the next roster connection. The above process
repeats until the routine finds all rosters that the
member is connected with. Then it does the same for
roster committees, groups, and group committees in

that order.

172

START
rAGUIRY PROGRAM

OPEN VATABASE
AREAS
b1s PLAY ORENING

MESSACE

MESAGE

ASKING Abovi
PERSON O

ORCANI2ANICN
¥V
QuesTRn-
ANSWER
rhRY
QA-EXIT

CLOSE DATABASE
AREAS

PERSON =1MEM

THRY
PM-ExT
ORGCAN-MEM
THRY
gM-ELT

DISPLAY
MES ALE

173

CEO -DILAY]
THRY
GCD-ENIT

Y

il

ORE-DISFLAY

|
|
1

Y

TS)

VES /ouFLAY /
) phentc

LW..__F--_,_

DisPLAY
DATE

<
«

ye ¢

ROSTEC-LIST
rHRU
RL-€aT

Y

STAL
GEo-01spL AY
[Fuma ciry I
MevE (PARACTER

FovNAD ES| Finp (OUNTRY
2
NO

/ mest‘/

4/ viA
STATE
DIsPLAY ciry
(OJN”‘“/
Ty Y
ORG -DISPLAY
Go-€ex1T —
T FIND ORCANI2A rin
Q;r- JusT
| TO [N ois PLAY
FHB’ 0N CANIZATUrY
DISPLAY Y
MESSACE
\ 4
HEXT ™ A .
CNARAITER Oy v To Fmg END

BLANA
?

174

(TATFD

ORCAN-MEM
RO
TERMINAL

FING RECORD

DISPLAY
NAME

NOORESS

FINO NExr
DUPLICATE
gs [DISFLAY
NAME
ADONELS
NU

175

JTART
PERSON-MEM

ACCEPT (AST
NAM, FIesT
NAtE, ANy

Moo HAME
LEROM rpRirlinAL
”

1

FIND REWCRD

DISPLAY
NAME

FING NE2T
OwPreICAT £

/Dunﬁy
NAME
ADORE S

CORRECT
RE(MD
?

176

Srapr
QUES rcn-ANSWER

ACCEPT 1AFVT
1 rc N6

NO
‘MOU(re DRSO — ——y
l rYyre-viroATE FIND Mar
NAHE ~CRCVP-REC
[4 or
(’ 7 AOCO 1+ TC Fap N AME =G Reup-sgr
QA-ExiT r
NV
FOUND YES DisreAy
? DATA
START ’
ROSTER-LIST QHC'
— Vd
Y N3 r——-~»~—_l___ e ~
FIND NEsT NiMt- { FIND NEaT
ROsien-CEC cF 1 AN E~Clerr £€C
O i
: -nOSTEL-REC
A 1 AME =4~ (0o
DISPLAY
FOVAD Disre Ay
? VAT A

[N -

FInND ANl

NALE-C=oMM-0EC
oF

NAME - R-(4HM3ET

177

APPENDIX F

DOCUMENTATION AND FLOWCHART FOR INTERFACE PROGRAM

~

178

DOCUMENTATION FOR THE INTERFACE PROGRAM

The interface program (TEMPFI.CBL) is a COBOL
program designed to give selected lists culled from the
data base. The lists are by rosters, committees, and/or
groups. The program can also supply an alphabetical
list of the entire membership, or give a listing of all
rosters, broken up into groups and committees when rele-
vant, together with members. The program accesses the
data base in retrieval mode only. The desired list is
on a disc file called ROSLIS.DAT. The program is
interactive only to the extent of accepting which
rosters, committees, and/or groups should be on the list
from the user.

The program starts by opening the output file
and the data base areas. It then displays a message
explaining the user options, and performs ACCEPT-ROS-NUM
THRU ARN-EXIT (line 34700) to receive the user input.

The program then checks to see which option the
user has selected. If ABC was entered ALPHABETICAL-LIST
THRU ALPH-EXIT (line 14200) is performed to give an
alphabetical list of the membership with associated
data. If ALL was entered, the program finds the first

roster record in the appropriate data base area (this is

179

done to provide a focal point for finding the next
roster). It then performs ROSTER-MOVE THRU ALL-EXIT
(see ALL-ROSTERS) to process that roster, and then
performs ALL-ROSTERS THRU ALL-EXIT (line 21700) to
process the remaining rosters. If ROS was entered
ONLY-ROS THRU OR-EXIT (line 41800) is performed to
give a list of the rosters, groups, and committees,

If neither ABC, ALL, nor ROS was entered, a
selected list of rosters, groups, and/or committees
was entered and stored in the table ROS-STUFF. NUM-
ROS-IN contains the total number of entries made. ROS-
OUT (n) contains the number of the nth entry, and FLAGG
(n) contains the kind of the nth entry.

The entries are processed one at a time. When
all are processed, the program ends. If an entry is a
roster ROSTER-MOVE THRU ALL-EXIT (see ALL-ROSTERS) is
performed. If an entry is a roster committee R-COMM-
MOVE THRU INTERNAL-EXIT (see ROSTER-WITH-COMM) is
performed. If an entry is a group GROUP-MOVE THRU
INTERNAL-CHECK-2 (see ROSTER-WITH-GROUPS) is performed.
Finally, if an entry is a group committee G-COMM-MOVE
THRU INTERNAL-CHECK-1 (see ROSTER-WITH-GROUPS) is

performed.

180

ALPHABETICAL LIST OF ROUTINES

ACCEPT-ROS-NUM THRU ARN-EXIT (line 34700):

This routine accepts input from the user, and
checks its validity. It starts by asking for input. 1If
blanks are input, the routine ends. 1If anything else is
input, the routine performs NUM-RECEIVE THRU NR-EXIT
(line 34600) to move the input to the data item NEW-ROS-
NUM. 1If the input is ALL or ABC, the routine ends.

With any other input, the routine checks the data item
BAD-INPUT to see if the input is in the right form. If
it is, the routine checks the rosters, roster committees,
groups, and group committees, in that order, looking for
the desired entity. When it is found, its number and
kind are stored, and the routine asks for the next
number, If at any time the user input is not good, an
error message is displayed, and the user is given the
chance to reenter the input. If three successive bad

inputs are entered, the program will terminate,.

ALL-ROSTERS THRU ALL-EXIT (line 21700):

This routine is used when the user has entered
ALL. It also contains the coding used to process a roster
which was entered as part of a selected list.

The routine starts by finding the next roster

record. If there is no next roster record, the routine

181

ends. If there is another record, paragraph ROSTER-MOVE
starts the actual processing of the roster.

ROSTER-MOVE saves the data base key of the roster,
moves the roster data to the output line, and writes the
output. Then it checks to see if the roster has groups.
If the roster has groups, the routine ROSTER-WITH-GROUPS
THRU RWG-EXIT (line 25300) is performed to complete
processing of the roster.

If there are no groups, the routine checks to
see if the roster has committees. If it does, ROSTER-
WITH-COMM THRU RWC-EXIT (line 31500) is performed to com-
plete processing of the roster,

If there are neither committees nor groups,
paragraph ROSTER-ALONE is used to process the members of
the roster. The next name on the roster list is found.
If there is no next name, the roster record is found via
its data base key (so that the next roster may be found)
and processing of the roster is completed. I1If a name is
found, its data base key is saved, its member record is
found, and NAME-FILE-MOVE THRU WRITE-IT-IN (see ALPHABE-
TICAL-LIST) is performed to process the member. Then
the roster record and the list name are found with their
data base keys (so that the next name on the list may be

found) and the routine branches back to ROSTER-ALONE.

182

ALPHABETICAL-LIST THRU ALPH-EXIT (line 14200):

This routine is used when ABC is entered by the
user. It also contains the coding used to process a
member whose name appears on a roster, group, Or
committee list,

The routine starts by finding the next member
record, If there are no more member records, the routine
ends. If there is another one, paragraph NAME-FILE-MOVE
starts the processing of the record.

NAME-FILE-MOVE saves the data base key of the
member record, moves the member information to the out-
put line, finds the member's geographic and organiza-
tional data and moves that to the output line. The
paragraph WRITE-IT-IN is used to write the output 1line.
Following that, the routine branches back to ALPHABETICAL-

LIST.

NUM-RECEIVE THRU NR-EXIT (line 39600):

This routine is used to move user input data to
the data item NEW-ROS-NUM. It considers only the first
three input characters., It moves them character by
character, starting with the right-most character, to
NEW-ROS-NUM. Then it replaces blanks by zeros, and

checks the input to see if it is numeric.

ONLY-ROS THRU OR-EXIT (line 41800):
This routine is used to produce a list of the

183

rosters, groups, and committees without members. It
starts by finding the first roster in TALL-AREA, and
performing ROSTER-MOVE (see ALL-ROSTERS) to write the
roster's record. Then the routine branches to COMM-
CHECK to see if the roster has committees. 1If not,
the routine branches to GROUP-CHECK.

If the roster has committees, the routine
successively finds their records and performs R-COMM-
MOVE (see ROSTER-WITH-COMM) to write the records. When
all the committees of that roster have been processed,
the routine goes back to NEXT-ROS to start processing
the next roster record.

GROUP-CHECK checks to see if the roster has
groups. If not, the routine branches back to NEXT-ROS
to start processing the next roster. If the roster has
groups, GROUP-MOVE is performed to process the record of
the first group. Then the routine branches to NEXT-COMM-G
to process the records of the committees in the group.
When all the committees in the group have been processed,
the routine branches to NEXT-GP to start processing the
next group of the roster, and the above process is
repeated. When all the groups have been processed, the
routine goes back to NEXT-ROS to begin processing of the
next roster. The routine ends when all the rosters have

been processed.

184

ROSTER-WITH-COMM THRU RWC-EXIT (line 31500):

This routine is used to process a roster which
is broken up into committees. It also contains the
coding used to process a roster committee entered by
the user. In general, it takes a committee, writes
the committee details, writes the details for each
member of the committee, and goes on to the next
committee,

The routine finds the next committee of the
roster. If there is no next committee, the routine ends.
If there is another committee, paragraph R-COMM-MOVE
starts the processing.

R-COMM-MOVE saves the data base key of the com-
mittee, moves the committee details to the output line,
and writes the output line. Then it finds the next name
on the committee list. If there is no next name, the
routine branches to INTERNAL-EXIT. 1If there is another
name, its data base key is saved, its member record is
found, and NAME-FILE-MOVE THRU WRITE-IT-IN (see ALPHA-
BETICAL-LIST) is performed. Then the list name and the
committee are found with their data base keys, and the
routine branches back to get the next name.

After INTERNAL-EXIT, the roster and the committee
records are found with their data base keys, and the

routine branches back to ROSTER-WITH-COMM.

185

ROSTER-WITH-GROUPS THRU RWG-EXIT (line 25300):

This routine processes a roster which is broken
up into groups. It also contains the coding to process
a group and a group committee. 1Its general strategy is
to process a group followed by all the members whose
names are on the group list. Then it successively pro-
cesses each committee of the group followed by the
members of the committee. When a group has no more
committees, the routine goes on to the next group.

The routine starts by finding the next group
contained within the roster. If there is no next group,
the roster record is found with its data base key, and
the routine ends. If there is another group, paragraph
GROUP-MOVE starts its processing.

GROUP-MOVE starts by saving the data base key
of the group, moving the group details to the output
line, and writing the output. Then the next name on
the group list is found. 1If there is no next name, the
routine branches to GROUP-COMMITTEES. If there is
another name, its data base key is saved, its member
record is found, and NAME-FILE-MOVE THRU WRITE-IT-IN
(see ALPHABETICAL-LIST) is performed. Then the group
and the list name are found with their data base keys,
and the routine branches back for the next group name.

GROUP-COMMITTEES finds the next group committee

186

within the group. If there are no more committees, the
program branches to INTERNAL-CHECK-2., If there is
another committee, paragraph G-COMM-MOVE starts,

G-COMM-MOVE saves the data base key of the
committee, moves the committee details to the output
line, and writes the output. Then it finds the next
name on the committee list. If there are no more names
on the list, the‘program branches to INTERNAL-CHECK-1.
If there is another name, its data base key is saved,
its member record is found, and NAME-FILE-MOVE THRU
WRITE-IT-IN (see ALPHABETICAL-LIST) is performed. Then
the committee and the list name are found with their
data base keys, and the routine branches back for the
next name.,

After INTERNAL-CHECK-1, the group and the
committee are found with their data base keys, and
processing returns to GROUP-COMMITTEES.

After INTERNAL-CHECK-2, the roster and the group
are found with their data base keys, and processing

branches back to ROSTER-WITH-GROUPS.

187

RT
ST Ace
PROCIRAM

1

r-]

’of’fn CUifF.T
FiLt

I seen PATARACE

ARE AS

Y

VN

DISPLAY
opPTIONS

{ ACCE PT ~R0S~
NUM
THRY

ARN-EXT

NEW -R0j
<Hw1

I

®

e
'/wa-dc) -
< pe

N aeger' S
’

ONLY-ROI

rHRV’

e
riABETIA S G
AL u!wfr CLOSE FuE
THRU { CLOSE
ALedEXIT oATAEAS 6
o ARERS
/ -
FIND FIRST STCP RUN
HOSTE R-ACC
of
TALL-AKFA
RUSTER-PRVE || P
reRu Ate R OSTERS
ALL-EXT '
v .
ALL- ROTERS UNTIL
THR Y Nb
ALe-EXIT MCPE
ROSTERS

LoR-ExIT

po—y

T “
P —— |

[eos7 £0- rove
e NUMNBER
\ P Thie
< ROSTER
2 ALL-E LT

) Y

R-(0MAT~ Move
ThRU

|TATERNAL =
{ EXIT

Mo +

‘o5 CKove- pMove
¢ ROvp rHRU
2 CANTERNAL™
' CHECH ~
NU < ¥

G~ term-reve
raRjRvu

INTERNAL —~

CHELA =y

189

SEF

"ALL-ROSTERS

sE€
ROSTER-wiTh-
cerim

SEE
ROSTER-wiry-
GROUPS

START

ALCCErT - ROy - TuT
— — &

OBPeAY
MELSACE
ACCEPT

rECruAAL
EnpPvr

NUM-RE“-""—E
THRY
NR-ExIT

E W-ACSS
NvM

" ADBC o

“att” oR
" ROs’

DISFLAY
MESSACE

AR -€IT

;rmo RCITEC-REC

r

| ARD 1 To Mutc

Ky £s
1OENTIPIERS

FINO Rors -
(omm:ne £

Ao I T¢

NyM-RCS - M
nEenr
LDENTIFIERS

Fing)
-ROVP ~REC

Foeuvnp
?

ADY + U
NUIME-ROS /N
nNeer
100eNI1F 1688

Fino (ROvP-
CemmITTEE

ADO ; ro
NUM-KUS =1y
KEEP

LtOENHFISA S

190

fpuruﬂ

MESSAGE

3]

ﬂez

START
ALL~ROSTERS

FWD NFEAT - T
ROSTER - REC
oF

FALL-AREA

v ro oonfg

DArA 1L Gv,pur

WCITE RECCRD

eno
ROSTER - pcyge

AtL-ExIT

ROSTER-wIIN-
JAN VT
repey

RWeGe~-EAT

(olﬂl‘f
rhrv
RWC-EXIT

fﬂifria'- w:rn-T

i
!

ROSTER -wirme
CrimM

THRY

Rw(-EnT

FIND NEAT
NAME-ROVE#-2CY
[ad

RUSTER-NAr£-SET

191

Fla® Memg e o

wod iTE <1T=/1r4

RECCRD
1 .
NAM: tng-poe| [SE&
7T 3] ALPPERETTIC A
LI r

SrART
ALPHARE TICAL =L IS8T

FINO NEAT
fiArﬂC"'“i of
ALPAB ETICAL

SET

ALPH-EXIT)
START
NAHE-HLE'@_é'

CET RECCAD

MOUE DATA T0
ovt el
CET Gockimmal
INFO, MoVE 1V
our PJUT
o ET ORCAN(BAINY

~ROSTE R -Re
or
INAME =RN0STER-SET

NamMme

Q’é\/ HD ves
1

NO

@—y—

M

HIGYE I oeTAVT
FIND NEXr. ()

I“'wt/a Rt"rcub,
re ovipvy

GEF RCITERRE(RND
Move nungsg

OuTPul -0

Fino rcur
ﬂAHE-ﬂ (eMHec

A - ﬂ (CMN-6T

MovE SesrovsmLI Ty
Fouf‘ » yES To cvivi
leeT commurre &
2L (RD
rave yorioh £
e, vl (s
FiINY NEXT
NAME - R/ -REC
cr
AME - (RO -sEM

FOVNO
?

MOVE Résrensisa vy
Te OvrAVT

GRT GROVP €8 (ecD

MEvE NUTER
ovIPUT - (0%

FINO NEXT

NAME -6 (0 MM -REC
or
HAME ~G~(CHM SET

yes
NC

192

START
WRITE -1 =10

1 -
WRITE OuvrPvr

| S—

[reve resromsivmiry
Jo ovipel
Cor (M irTES

RE(eEV
IMova NMuMiZr
CVIP VT o BE

START

NyM~RECEIVe

¥ 10 INO

§PALE TO EAMINC At -RF-1m
nEw -R0S-NUM REM ACE SPACE

t rv FN8

0 ro T EMP-LND gy refo

: STACT
NR-6XIT

gES -
7
New-roi-my YES
Nu Me RIS ‘
?
No
ADO ' TO Frg
“0°To sAo-INpLT
f
SUPTRACT END
, rROM IND,
TEMP-IND, FNG
AVD ¢ 10 TErMp-IaP FHNB (HARACTIESR
PNy To
NuM-TH(END)

193

ST ART
ONLY-ROS

FIND PIRST
RpsTsR-REC
e

TALL-AREA

Y

FIND NEaT

RUSTER-REC
oF

TALL-AREA

NO

OR-EBXIT

ROS TER -MOVE __)®

. §ce
tOALL-RTERS |

R (oM -rovE

(vV—]

Rot TE R-MMVE

PIND Héxr

R-COMMITTEE
0~

ROSTER-(Cmr-56T

B

Q

FIMU "IR4T
GReuP-REL

oF
ROSTER~CANJASET

PINO FIRST
R-tcrrTTbE
oF

ROSTER-(OM1ET

> e

NO

194

Ne

. SGE
ROITER ~wiTm~
coraM

[R-CoMM-MOvE

"SEC ROSTEL-
CwiThee0VPS

(RourP-MOVE

N

START
RISTER -wiTh- (0N

@

FInO NeaT s':gm“‘r’t :
G ROVP-REC c:’ e
of ROSTE L -comn

o S &

ROST € R~ Rov?->€T] i

"Nove cempirtes]

BALA I cvifvl

NU
)T

G RovP ~pove {J

WRITE oOvTHvl

FinNg MEAT
NAME -R~ONM -Lec

\;{ | u’
| R~AoMM-MaMESET

FIND NEXT
G ROVP ~(OMMITTE .
e € 'SEE
£ . F N0 -
ROSTER = MEMOEC |yes 7
<7 FOvND

G ROVP =L Grvim- 3 ey = CROWS
SET . . RECORD

qEs | | -CoMrt-rovE

ﬂﬁ:r?-ﬁ;t-”(.;c
THR U

NO WAITE-11-PN

@ "SEE AL

PHABEIICAL~LIST

"195

START
ROSTER-WilH - (RO

MO0 NEXT
GCROVP -
oF

ROSTE L~ (-ROVPLT

START
ROV’ -MOVE

Fw NERT
RO~ CMITTE

OF
GROVA-(CAM=SET

MuvE (Rov?
pAra 1 0Pl

wWRITE RC(CRD

ENQ ¢ RUw? 10

NO
RWG-EXIT

FmD /'Mr

NAME - (Rov?-RES
of

CROVFP-NAMCE~SET

<>

[NrE('ML (Hen,

€’
FIND Meénser 1
RECORD
L 4
NAME - FILE - nt
MOV E
ret v
wWRITE=ir-ip
ScE
ALPRAGRTICAL -
Lisr

-

MovE (omMmirfLe
BATA It cvifvl

EnD (- femt-fcve
@;\‘

FIND WEAT

A ~C-laeg-cc¢
or

C (MM -AAPICSET

FiN) MEA G
RpecRy

NAME =FiLf - (Rv6
rhav
u,“}[-H-u‘{

Iy

196

I NTECHAL CHe
1

APPENDIX G

USER MANUALS

197

USER MANUAL FOR THE UPDATE PROGRAM

I. INTRODUCTION

The update program allows the user to add a new
record to the data base, modify an existing record,
and/or delete an existing record. The additions can be
for a new person member, a new organizational member, or
a new roster, group, or committee., The modifications
can be for any item in the record of a member, or for
any item in the record of a roster, group, or committee
except the field used for the internal identification
number (should the user wish to change that item, it
would be necessary to delete the old record and create
a new one from scratch, including re-linking all the
members). In addition to the above listed modifica-
tions, the user can change the organization and/or
geographic lists that a member is on. The user may also
alter the links to rosters, groups, and/or committees
for an individual member, and/or alter the special
responsibility the member has with those rosters, groups,
and committees, Changes of the types mentioned in the
lasf two sentences can only be made by accessing the
record of the individual member first. The record of a

member, roster, group, or committee can also be deleted

198

completely from the data base. The deletion of a
member's record will automatically delete the name from
all lists that it was on, so there is no need to
separately remove the member's name from the lists.

The user can obtain information about what is
currently in the data base by running the interface
program (TEMPFI.CBL) and getting a printout of the
created file. This will provide the user with geogra-
phical and organizational data for each member, and
also a list of the rosters, groups, and committees that
the member is on, together with the member's respon-
sibility.

The user can also obtain data in two other ways.
For a limited number of members, it may be preferable
to use the inquiry program (READDB.CBL). For a complete
dump of the data base, together with all linkages, the
utility DBINFO (see the recovery manual) can be used.

The update program is written so that during
execution all user input follows the prompt ==>,
Whenever the prompt appears, the machine waits for user
input. The user should enter the correct data, and then
press the return key. If there are no values to input,
just press the return key. This is equivalent to input-
ting all blanks. If a mistake is made before the return

key is pressed, the entire entry can be remade by holding

199

down the CTRL key, and pressing U. The actual input
starts with the first non-blank character, so spacing
before an entry is not relevant, as long as the total
input is not more than 50 characters.

In some cases the machine will recognize im-
proper input, and will print a message to that effect,
In such cases the user will usually have the opportunity
to try again. In general, should the user enter three
consecutive improper inputs, the program will cease
execution. When the input must be a specific type, the
machine will usually print a message explaining what is
considered valid.

It is possible that during execution a data
base exception will occur. If it does, a message will
appear which looks 1like

STATUS/AREA/RECORD/SET = ———=- [ood ...
In place of the four blanks, there will be a three or
four digit number called the error-status. The dots will
be replaced either by a blank or by data names used in
the data base description. A particular example could
be something like

STATUS/AREA/RECORD/SET = 322//ORGANIZATION-REC/ORGAN-NAME-SET
which could occur if the machine tried to find the orga-
nization of a particular member and the member had no

organization listed.

200

An isolated exception message should not be
cause for concern. However, should they appear fre-
quently, or should the last two digits in the error-
status be higher than 50, it is likely that the DBMS
system has crashed. In such a case cease execution as
soon as possible (try not to abort the program prema-
turely, however) and report it to the director of
computer systems at Fritz Lab. Generally, updates
made prior to a system crash will be intact, and those
made after the crash will be non-existent. The update
in progress during the crash could be messed up. It
may be advisable to delete that record, and reenter
it when system recovery has been completed.

During execution of the update program files
are created on disc listing the additions, deletions,
and modifications. The files are called ADDED.DAT,
DELETE .DAT, and CHANGE.DAT. If a listing is desired,
ask for the listing before the update program is run
again, because at that point the old files will be
deleted.

The program is written so that the machine will
display a message about each user input. Some of the
messages take several lines. If there is a large number
of updates to make at a given sitting, the user may

prefer to use a hard-wired CRT (there are some, for

201

example, at Christmas-Saucon) to decrease the time
necessary for the message displays to appear, hence to

speed up the overall process,

II. ADDITIONS

The user is first asked to enter P,O,R,C, or G
to represent the addition of a person member, organi-
zational member, roster, group, or committee. Any
input starting with one of those characters would be
acceptable, Thus, if the user were to enter PETUNIA,
the program would branch to the coding used to process
the record of a new person member. If any character
other than those listed above is entered, the machine

will display an error message.
A. NEW PERSON MEMBER

First the machine will ask for the last name of
the person, then the first name, and then the middle
name., The last name can be up to 20 characters long
(starting with the first non-blank character), and the
first and middle names can be up to 14 and 13 characters
respectively. Excess charac¢ters will be ignored.
Following the name, the machine will ask for the title,
e.g. Mr,, Miss, Ms, Dr., Prof, etc., which can be up to

17 characters long.

202

After the title the machine will request the
address as it would appear on a four line address label.
The address as given in this part is not checked for
content, but merely stored as input., The city and
state or country, which are used mostly for sorting
purposes, and the zip code will be requested later.

The zip code will be placed as the last 5 characters on
the fourth line, and should not be entered until speci-
fically requested. The second, third, and fourth lines
of the address are stored as entire fields and should be
entered exactly as the user wishes to see them on a
label even if it means repeating the city and state or
country, The second and third lines can be up to 32
characters long, and the fourth line can be up to 33
characters long (28 if space is to be reserved for the
zip code).

Following the address, the computer will ask if
the persoh is located in the United States. This is the
only yes-no question which needs specific input, i.e.,
Y or N, If Y is entered, the computer will request the
state (up to 27 characters). If N is entered, the com-
puter will request the country (up to 32 characters).
After state or country, the computer will request the
city (up to 32 characters). If the state or country is

not one for which the data base has an existing record

203

(which would probably be the case if the entry were
misspelled), the computer will ask the user to reenter
the name. This should be done even if the original
spelling was correct. If the city is in a state or
country that had previously been in the data base, then
the computer will also ask for a reentry if it cannot
find the city as an existing record. These are the
only cases for which the program provides facilities to
correct possible input errors during an update. It is
done here to avoid cluttering up the data base with
extraneous records which would never be used. In other
cases errors can be corrected by using the update program.

The next items the computer asks for are the
phone number, the starting date, and the organization of
the member. The display explains how to enter the phone
number and starting date. The organization name can be
up to 34 characters.

Finally the computer will ask for the rosters
that the person should be linked to. This means rosters,
committees, and groups. Before it does so, there might
be a slight delay, as the machine has some processing
to do. The delay should not be more than 2 or 3 seconds.
Then the user should enter the identifying number (up
to three digits) of each entity as the machine requests

them. The rosters, groups, and committees must have

204

been previously entered into the data base. After the
member is linked to each roster, group, or committee,
the computer will request the member's responsibility
within that entity. If there is no special responsibi-
lity such as chairman, editor, etc., this entry may be
left blank. Up to 6 characters may be entered, but
only the first one will be used in many applications.
When the last connection is made, the user should enter

blanks as a signal that the inputs are finished.
B. NEW ORGANIZATIONAL MEMBER

The computer starts by asking for the name of
the organization. The name should be entered as one
line using up to 34 characters. Then, starting with
questions about the address, the computer will ask the
same questions as it does for a new person member, except

that it will not ask for a title or an organization.
C. NEW ROSTER, GROUP, OR COMMITTEE

The computer will start by asking for the number
of the roster or committee. This actually means roster,
group, or committee. The entry should be an integer
number up to three digits, and should be unique, 1i.e.,
it should not be in use currently for any existing
roster, group, or committee.

The next item the computer will ask for is the

205

roster or committee type. This should be a 2 character
entry. The type was originally used as the first two
characters of the eight character identifier used with
the old system. For example, roster 20S had the type
SC for steering commiftee.

The next request will be for the identifier.

The identifier was originally used as the last six
characters of the eight character field used for identi-
fication under the old system. Of course it is not
necessary to use all six characters., The identifier for
roster 20S would just be 20S.

Following the identifier, the machine will ask
for the output code. The output code is a 4 character
field which will be used to identify the roster, group,
or committee on certain printed lists.

After the output code, the machine will ask for
the description. The description is in two parts as
explained in the machine display.

If the new entity is a roster, the machine will
store the new record and then ask for the next update
from the beginning. If the new entity is a group, the
machine will ask for the identifying number of the roster
that the group should be contained in. Again, this
number is a 3 digit number unique for the roster. The

roster must have its record already entered into the

206

data base,

I1f the new entity is a committee, the machine
will ask for the number of the roster that contains the
committee., If it is a group committee, the user may
enter the number of the group that contains this
comnittee. If the user enters the roster number, the
machine will then ask for the associated group anyway.

Remember that if a new group or roster committee
is added, the associated roster must have its record
already in the data base. If a group committee is
added, the associated group must have its record

already in the data base.

III. MODIFICATIONS

The machine will start by displaying a message
expleining the types of modifications which may be made.
In this context the word ROSTER is used as a generic
term meuning either roster group or committee. The user
should enter either P (for person member), O (for organi-
zational member), or R (for roster, group, or committee).

No other input will be accepted by the machine.

A. MODIFICATIONS FOR A PERSON MEMBER
This branch of the program directs the machine

to start by asking if the user wants to enter only the

207

last name, and have the machine search through the
records of all the members with the input last name, or
if the user wants to enter the entire name. If the user
elects to enter only the last name, the machine will
display successive names and addresses until the user
indicates (by entering Y) that the correct record
has been found.

Entering the entire name is quicker. If the
user elects to enter the entire name, the machine will
ask, in this order, for the last name, the first name,
and the middle name of the person as three separate
inputs. It is very important to enter the name exactly
as it is recorded before the change. If the name is
not entered correctly, the machine will not be able to
find the correct record for modification, If the name
is entered correctly, the machine will display the
person's name and address and ask the user to verify
that the correct record has been found. This is
because it is possible for several members to have the
same name. If the user indicates that the record is _
not the record for the correct member, the machiné will
look for a record of a member with the same name and
repeat the above process. This will continue until
either the correct record is found or there are no more

records to check. In the latter case, a message to that

208

effect will be displayed. The user makes the asked for
indication by entering either Y (or any word starting
with Y) to indicate the record is correct, and anything
else to indicate that the record is not correct.

Once the correct record is found, the computer
will ask if the user wants to change the name. If the
answer is yes, the entire new name must be entered as
it is requested, even if the only change is for one
part of the name, e.g., to change the first name from
Just an initial to the entire first name.

After the name question the computer will ask
about changing the title. Then it will ask about chang-
ing the address as it appears on an address label. If
the address is to be changed, the entire new address
must be entered, even if a change occurs on only one
line of the address. Changes to the address refer also
to changes to the zip code. If the zip code is unknown,
Just leave it blank. The rules for entering an address
during a modification are the same as the rules for
entering an address during an addition.

The next three questions, in order, are about
changing the phone number, changing the starting date,
and entering an end date. Then the computer will ask if
the state or country is to be changed. If the answer

is yes, the computer asks if the new country is the

209

United States., If it is, the machine will ask for the
name of the new state, and then ask for the name of the
new city. If the new country is not the United States,
the machine will ask for the name of the new country
followed by the name of the new city.

If the user does not want to change the state or
country, the machine will ask if the city is to be
changed. In this case and in the cases in the previous
paragraph, if the new geographical entity is one for
which the data base does not have an existing record,
the computer will ask the user to reenter the name.
This is protection against an input mistake, It is
used to avoid cluttering up the data base with extra-
neous records.

Following state, country, and/or city changes,
the machine will ask if the person's organization is to
be changed. Then it will consider changes in roster,
group, and/or committee affiliations. Again ROSTER is
used as a generic term to stand for roster, group, or
committee, As stated in the display, the machine con-
siders deletions, additions, and changes in responsibi-
lity in that order. By deletions, the machine means
deleting the member's name from a roster, group, or
committee list. By additions, the machine means adding

the member's name to roster, group, or committee lists.

210

In this case the responsibility on the roster, group,
or committee must also be added. A person has a
change in responsibility if his or her name remains on
a roster, group, or committee list, but the special
responsibility within that roster, group, or committee
is to be changed.

Changes in roster, group, and/or committee
affiliations are handled one such entity at a time, in
the order specified above. The user is asked to start
each change by entering the identifying number of the
entity involved. When changes of one type have been
completed, a blank should be entered as a signal to go

on to the next type.
B. MODIFICATIONS FOR AN ORGANIZATIONAL MEMBER

These are almost the same as modifications for
a person member, The main differences are that the name
is entered as a whole instead of in parts, and there are
no questions about changes in title or organization.
Also, since an organization cannot be a chairman, vice
chairman, editor, etc., of a roster, group, or committee,
there are no questions about changes in responsibility

when changes in roster affiliations are considered.

C. MODIFICATIONS FOR A ROSTER, GROUP, OR

COMMITTEE

211

The computer will first ask for the roster or
committee number. This means the three digit identify-
ing number of the roster, group, or committee. This
identifying number is the only data item in the record
of a roster, group, or committee which cannot be
modified.

The first question asked is if the user wishes
to change the type. The type is the first two
characters of the eight character identifier used with
the old system. For example, roster 20S had the type
SC for steering committee.

Next the machine will ask if the identifier is
to be changed. The identifier is the last six
characters of the old identification., Of course it is
not necessary to use all six characters., In roster 20S
the identifier is 20S,

After the identifier, the next item considered
for change is the description. Finally the output code
is considered for change. The description is in two
parts, the first is 32 characters, and the second is 30
characters. If there is a change, both parts must be

reentered.

IV. DELETIONS

The machine starts by asking the user to enter

212

P, O, or R. P is entered if the record of a person
member is to be deleted. O is entered if the record of
an organizational member is to be deleted., R is entered
if the record of a roster, group, or committee is to be

deleted.
A. DELETION OF A PERSON MEMBER'S RECORD

The user is asked if he (or she) wishes to enter
only the last name, or the entire name. If the user
elects to enter the last name only, the machine will
successively display the names and addresses of all the
members with the given last name until the user indi-
cates (by entering a Y) that the correct record has
been found. If the user elects to enter the entire name
(which is quicker), the machine will ask for the last
name, the first name, and the middlé name in that order.
The name must be entered exactly as it is presently
recorded in the data base. Then the machiné will dis-
play the name and address of the person, and ask the
user to verify that the correct record has been found.
This process will continue until either the correct
record is found, or there are no more records of members

with the input name.
B. DELETION OF AN ORGANIZATIONAL MEMBER

The user is asked to enter the name of the

213

organization. Then the machine proceeds as in the case

of a person member.
C. DELETION OF A ROSTER, GROUP, OR COMMITTEE

The user 1is asked to input the three digit
identifying number of the roster, group, or committeec.
Then the description of that entity is displayed, and
the user is asked to verify that the correct entity is

being considered for deletion.

V. FINAL COMMENTS
A. USE OF THE UPDATE PROGRAM

To avoid confusion, the update program is
designed so that it cannot be used if the data base is
being used for any other purpose,»say for the inquiry
program or the interface program. That means the update
program cannot access the data base until all other
applications have exited from the system. Similarly,
once the update program connects to the data base, no
other application can access the data base until the

update program makes a normal exit.
B. FAILURE TO EXECUTE

The user may find that for no discernable reason

the machine will not execute a particular command (if

214

the system crashes, the reason is definitely discern-
able). A possible explanation for this is that the DEC
system software (i.e. the vendor supplied program which
carries out the application program commands about the
data base) is still new and to a certain extent experi-
mental. All the '"bugs'" have not been removed. Often
difficulties can be overcome by starting the particular
update over (do not re-do the parts that did execute)
or even ending the execution of the update program and
starting over (again, do not re-do the parts that did

execute).

215

USER MANUAL FOR THE INQUIRY PROGRAM

The inquiry program is a program written to
allow a user to interrogate the data base about the
data associated with an individual member. Should the
user wish a list of the members associated with a
particular roster, group, or committee, the interface
program (TEMPFI .CBL) can be used for that purpose. The
inquiry program is designed to work interactively. It

does not create any files. It cannot change anything

”
i

in the data base, but can only read what is already there.
The inquiry program is written so that during
execution all user input follows the prompt ==>
Whenever the prompt appears, the machine waits for user
input. The user should enter the correct data, and then
press the return key. If there are no values to input,
Just press the return key. This is equivalent to input-
ting all blanks, If a mistake is made before the return
key 1is pressed, the entire entry can be remade by hold-
ing down the CTRL key, and pressing U. The actual.-input
starts with fhe first non-blank character, so spacing
before an entry is not relevant, as long as the total
input is not more than 10 characters for one letter input,

and 50 characters for name input,

216

The user is first asked to input P or O to
indicate whether the record to be interrogated is for
a person member, or for an organizational member.
The user may actually enter anything starting with
either of those letters, as the program is written so
that it will only look at the first non-blank character
of the input in this case. 1If anything other than P
or O is entered, the machine will regard it as a signal
to end the program, and will cease execution., For
questions that can be answered 'yes' or '"no', the
machine will regard any input beginning with Y as a 'yes"
answer, and anything else, including blanks, as a '"no'".
After identifying the type of member, the user
will have to enter the member's name., It is very
important to enter the name exactly as it is presently
recorded. If the name is entered in any other form, the
machine will be unable to locate the correct record. The
name of a person member is entered in three parts (any
of which can be blank) as the machine requests them. The
last name is entered first, then the first name, and then
the middle name. For an organizational member, the name
is entered all at once. After the name is entered, the
machine will try to find the associated record. If it
cannot be found, the machine will display a message to

that effect. If the name is found, the machine will

217

display the name and address, and ask the user to verify
that the correct record has been found. This process
will repeat until either the correct record has been
found, or there are no more records of members with the
input name. The above procedure is carried out because
it is possible for several members to have tﬁe same
name,

Once the correct record is found, the machine
will ask, in order, if the user wants to see the geogra-
phical data, the associated organization, the phone
number, the start date; the end date, and finally a 1list
of committees that the member is on. By committees
the machine means rosters, groups, or committees. 1In
each case the user is asked to indicate whether the
particular item should be displayed. When the questions
are finished, the machine will ask about the next

member .,

218

USER MANUAL FOR THE INTERFACE PROGRAM

The interface program is used to create a
temporary file of selected rosters, groups, and/or
committees for the project application programs to work
on. The created file is called ROSLIS.DAT. The user
should be sure that the old temporary file is either no
longer needed, or copied to another file name, because
whenever the interface program is run, the old
ROSLIS.DAT is automatically deleted.

User interaction with the interface program is
limited to entering the roster, group, and/or committee
numbers wanted in the selected list. If a committee
number is input, a logical picture of the output will
be

committéé data
member 1 data

member 2 data

member n data

If a group number is input, a logical picture of the

ocutput will be

219

group data

member 1 data

member n data
committee 1 data

member 1 data

member nl data
committee 2 data

member 1 data

member n2 data

committee m data

member 1 data

member nm data

If a roster with neither groups nor committees is entered,

the output will be similar to that of a committee. If a

220

roster with groups is entered, the output will be

roster data
output for group 1 (see above)

output for group 2

output for group n
If a roster with committees is entered, the output will
be roster data followed by committee output (see above)
for each committee in the roster.

The user has three other options., ABC can be
entered, which will produce an alphabetical 1list of the
entire membership. Also, ALL can be entered, which will
produce roster output, with members, for every roster in
the data base (hence every group and committee also).

ROS can be entered, which will produce just a list of
rosters, groups, and committees, without members.

The machine will request each user input. Should
the user entry be invalid, the machine will display an
error message, and request the entry again, Three con-
secutive invalid inputs will cause the program to ter-
minate.

All user input will follow the prompt ==> ., User
input, other than ALL, ABC, or ROS, shoulq be an integer

number up to three digits, which is the internal

221

identifying number of a roster, group, or committee,
When all of the numbers have been entered, the user
should enter a blank to indicate that user input is
finished.

When all user input has been entered, it will
take the machine some time to complete the actual
processing. This time will be several minutes at the
least, and may be as much as 30 to 60 minutes. At
this writing, it is impossible to tell. Do not turn
off the terminal until the machine indicates that the
processing has been completed. This indication will
be the following:

@EXIT

Usually the terminal will also beep.

222

APPENDIX H

GENERAL INFORMATION MANUAL

223

GENERAL INFORMATION AND RECOVERY MANUAL

I. INTRODUCTION

This manual is intended as a guide in using the
DEC system data base management system (DBMS) vendor
manuals. It should allow the user to use the vendor
manuals to obtain information about the data base, to
recover from system failures, and to be able to under-
stand how the DBMS data manipulation language (DML) is
used in application programs. This is not intended as
a replacement for the vendor manuals, nor will it
allow the user to make major changes in the system
without being familiar with the DEC DBMS (or getting

help from someone who is).

II. DATA MANIPULATION LANGUAGE

The DML essentially does nothing more than add
extra verbs to a host computer language., Since all the
application programs for this system were written in
COBOL, this manual will consider the DML verbs as being
additions to the COBOL language. Only the most common
situations will be considered here. A complete descrip-

tion of the usage of the DML is in the DECSYSTEM's

224

Programmer's Procedures Manual.

The verbs can be used in any COBOL sentence
(where they would make sense). The most commonly used
verbs are FIND, GET, MODIFY, STORE, INSERT, REMOVE,
DELETE, and MOVE STATUS. Most of the verbs can be
used in several different ways.

The key to most processing is the FIND verb.
All the other verbs, except STORE, make sense only
when they are used in conjunction with a FIND command.
'STORE must also be used in conjunction with a FIND
command in some cases, as will be explained shortly.

The DBMS software maintains pointers to many
different CURRENT records. There i1s CURRENT OF RECORD,
CURRENT OF RUN-UNIT, CURRENT OF AREA, and CURRENT OF
SET. When the FIND verb (or the STORE verb) is used,
the record it finds (or stores) is automatically made
the CURRENT OF RUN-UNIT, and, unless the programmer
specifically directs otherwise, the CURRENT of record
and any sets and/or areas that the record is in,
When the other verbs are used, they act on the CURRENT
OF RUN-UNIT (with some other record, in some cases).

The FIND verb, in all its forms, does nothing
except set the CURRENT pointers. If the programmer
wishes to do anything with any of the data items of a

record, including just read them, the GET verb must be

225

used to copy the record into the user work area. GET
does not take the record out of the data base.

Once a record has been brought into the user
work area, the programmer can manipulate the record's
data items with any of the usual COBOL verbs (MOVE,
ADD, etc.). These changes will be made only in the
work area. In order to change items in the data base,
it is necessary to do the manipulations in the user
work area, and then use the MODIFY verb. It is
possible to use a record name following GET or MODIFY.
If the CURRENT OF RUN-UNIT does not agree with the
record name, the DBMS software will cause an error
status to occur. It will not GET or MODIFY any record
except the CURRENT OF RUN-UNIT.

A STORE command must be followed by one or
more record type names. When STORE is used, it creates
a new occurrence of the specified record type(s), taking
as values whatever happens to be in the appropriate
parts of the user work area. It also inserts the newly
stored record into any sets in which the specified
record type was declared an AUTOMATIC member in the
schema description, The programmer must be careful here.
In order to ensure that a member record is connected to
the correct owner record(s), the programmer must first

FIND the owner records to make them the CURRENT OF RECORD

226

for their record types.

If a record type was not declared as a MANDATORY
AUTOMATIC member of a particular set, a specific occur-
rence of the record need not be in an occurrence of the
set, 1.e., the record need not be connected to any owner
record of the set. 1In order to put it in an occurrence
of the set, the programmer must use the INSERT verb,
Before using INSERT, the programmer must FIND the
correct owner record, and then FIND the record to be
inserted into the set.

The REMOVE verb performs the opposite function
of INSERT. It removes a record from a set in which the
record type was declared as an OPTIONAL member in the
schema. Nothing happens to the record itself, only
some of the pointers are changed or deleted. Before
using REMOVE, the programmer must FIND the record to be
removed.

DELETE removes a record from the data base. A
record must be the CURRENT OF RUN-UNIT before it can be
deleted with the DELETE verb. The programmer can specify
a record type name after the DELETE verb just in case
the CURRENT OF RUN-UNIT is the wrong record type. When
that happens an error status message will be returned,
and nothing will be deleted. If a record to be deleted

is an owner record in any sets, all the MANDATORY members

227

of the sets which are owned by the record will be
deleted with it, and in some cases, depending on how
the programmer uses the DELETE verb, the OPTIONAL
members owned by the record are also deleted.

During the processing, it is often necessary to
process a collection of records of a given type. Then
the programmer may use the FIND NEXT option, where NEXT
can be the next fecord of a given type in either a set
or area. What- -the software does is use the current
record of the set or area (regardless of type) as the
starting point from which to look for the next record
of the desired type. If the processing statements had
any FIND statements (or STORE statements) before the
FIND NEXT, the current record of the set or area may
not be where the programmer wants it to be. One way to
avoid the problem is to save the data base key of the
last record of the given type, do the processing, refind
that record directly using the data base key, and then

FIND NEXT. An example is as follows:

WORKING-STORAGE SECTION,

77 HOLD-REC PIC 9(10) COMP.

PROCEDURE DIVISION,

228

FIND NEXT ROSTER-REC RECORD OF TALL-AREA AREA.
MOVE STATUS FOR RUN-UNIT TO HOLD-REC.

FIND ROSTER-REC USING HOLD-REC.

FIND NEXT ROSTER-REC RECORD OF TALL-AREA AREA.

MOVE STATUS is the verb used to save the data
base key. HOLD-REC is just a programmer declared data
item in working storage. The FIND USING
option is a direct addressing technique, and is very

fast.

ITII. DATA BASE INFORMATION

The DEC system supplied utility program DBINFO
allows the user to obtain information about his data
base. There are various types of information, and all
are described in the vendor's Administrator's Procedures
Manual. The type of information which might be most
useful is one which gives a complete picture of what is
contained in any or all of the data base areas and/or sets.
In this case there are two areas, NAIM-AREA and TALL-AREA.
Suppose a picture of NAIM-AREA and the set GROUP-NAME-SET
of TALL-AREA is desired. The following is an example of

how to obtain that picture:

229

@R DBINFO

/SCHEMA STEVE

/SS UNIVERSAL

/SUPERSEDE DATFI

JOPEN "TALL-AREA"

/DISPLAY DATA:

"GROUP-NAME-SET"

/CLOSE "TALL-AREA"

JOPEN "NAIM-AREA"

/PAGES "NAIM-AREA"

/DISPLAY DATA

/CLOSE ALL

/"C

@

Notes:

1, @ is the
2. R DBINFO
3. / is the
4, STEVE is

machine command mode prompt.
calls the utility program.
machine prompt for the utility program.

the name of the schema, and UNIVERSAL

is the name of the subschema being used.

DATFI is

the user defined name for the file

which will contain the eventual result.

The OPEN

statement opens the areas in protected

retrieval mode. If they are specified that way

in the schema, a privacy key must be included.

230

7. The names of areas and sets must be included
in quotes if a hyphen is included in the name.

8. After the command DISPLAY DATA is given, there
may be a wait before the next machine prompt
appears, as the data must be written into
the DATFI file,

9. The open commands set the pages for those areas
until the first DISPLAY command is given. Then
the PAGES command must be used to reset the
pages of the data base,

10. AC appears when the user holds down the CTRL key
and presses C to indicate that the machine should
return to command mode.

11. At the conclusion, all the information will be
in the file DATFI.DBI.

.
Iv. DATA BASE RESTORATION

If the system should crash for any reason during
an update run, the data base areas will be left in an
undefined state. In order to be returned to a usable state
tﬁe data base utility program DBMEND must be used to force
open the data base areas and then close them. An example

is the following:

231

@R DBMEND
/SCHEMA STEVE

/FORCEOPEN "TALL-AREA" :FIXEM
/FORCEOPEN "NAIM-AREA" :FIXEM
JCLOSE ALL

/"C

@

This utility is similar to DBINFO, but is
actually easier to use. FIXEM is the privacy keys for
the data base areas, and must be used since DBMEND

actually does change the data base.

232

Vita

The author was born on March 31, 1943 in
Springfield, Massachusetts, the son of Dr. H. Bernard
Tillman, and Mrs. Jean E. Tillman, |

He graduated from Springfield Classical High
School in 1961. He received a Bachelor of Science
in Applied Mathematics from Brown University in 1965.

He received a Ph.D. in Mathematics from Brown University
in 1970.

Since 1970, he has been on the faculty of

Wilkes College. Currently he is an Associate Professor

of Mathematics and Computer Science.

233

	Lehigh University
	Lehigh Preserve
	1-1-1978

	Design and implementation of a data base management system application for the small user.
	Stephen J. Tillman
	Recommended Citation

	tmp.1451580486.pdf.d07X8

