2,825 research outputs found

    Energy Loss from Reconnection with a Vortex Mesh

    Full text link
    Experiments in superfluid 4He show that at low temperatures, energy dissipation from moving vortices is many orders of magnitude larger than expected from mutual friction. Here we investigate other mechanisms for energy loss by a computational study of a vortex that moves through and reconnects with a mesh of small vortices pinned to the container wall. We find that such reconnections enhance energy loss from the moving vortex by a factor of up to 100 beyond that with no mesh. The enhancement occurs through two different mechanisms, both involving the Kelvin oscillations generated along the vortex by the reconnections. At relatively high temperatures the Kelvin waves increase the vortex motion, leading to more energy loss through mutual friction. As the temperature decreases, the vortex oscillations generate additional reconnection events between the moving vortex and the wall, which decrease the energy of the moving vortex by transfering portions of its length to the pinned mesh on the wall.Comment: 9 pages, 10 figure

    Post-Outburst Observations of V1647 Ori: Detection of a Brief Warm, Molecular Outflow

    Get PDF
    We present new observations of the fundamental ro-vibrational CO spectrum of V1647 Ori, the young star whose recent outburst illuminated McNeil's Nebula. Previous spectra, acquired during outburst in 2004 February and July, had shown the CO emission lines to be broad and centrally peaked-similar to the CO spectrum of a typical classical T Tauri star. In this paper, we present CO spectra acquired shortly after the luminosity of the source returned to its pre-outburst level (2006 February) and roughly one year later (2006 December and 2007 February). The spectrum taken in 2006 February revealed blue-shifted CO absorption lines superimposed on the previously observed CO emission lines. The projected velocity, column density, and temperature of this outflowing gas was 30 km/s, 3^{+2}_{-1}E18 cm^{-2$, and 700^{+300}_{-100} K, respectively. The absorption lines were not observed in the 2006 December and 2007 February data, and so their strengths must have decreased in the interim by a factor of 9 or more. We discuss three mechanisms that could give rise to this unusual outflow.Comment: 14 pages, 2 figures, accepted for publication in ApJ

    Dissipative Transport of a Bose-Einstein Condensate

    Full text link
    We investigate the effects of impurities, either correlated disorder or a single Gaussian defect, on the collective dipole motion of a Bose-Einstein condensate of 7^7Li in an optical trap. We find that this motion is damped at a rate dependent on the impurity strength, condensate center-of-mass velocity, and interatomic interactions. Damping in the Thomas-Fermi regime depends universally on the disordered potential strength scaled to the condensate chemical potential and the condensate velocity scaled to the peak speed of sound. The damping rate is comparatively small in the weakly interacting regime, and the damping in this case is accompanied by strong condensate fragmentation. \textit{In situ} and time-of-flight images of the atomic cloud provide evidence that this fragmentation is driven by dark soliton formation.Comment: 14 pages, 20 figure

    Marketing Practices of a Sample of Iowa Hog Producers

    Get PDF
    The papers in this report summarize some of the results of a survey of 489 Iowa hog producers. The survey was conducted in 1972; it included producers in all areas of Iowa. The Departn^nt of Economics and the Statistical Laboratory of the Agriculture and Home Economics Experiment Station at Iowa State University coopera ted in conducting the survey. The survey was financed by Agriculture and Home Economics Experiment Station project 1822. This report deals with hog marketing decisions and practices; another report deals with hog production facilities and practices. The authors of the following papers are grateful to the Statistical Laboratory, to the interviewers who collected the data and to the farmers who provided the data

    Quantum phase space picture of Bose-Einstein Condensates in a double well: Proposals for creating macroscopic quantum superposition states and a study of quantum chaos

    Full text link
    We present a quantum phase space model of Bose-Einstein condensate (BEC) in a double well potential. In a two-mode Fock-state analysis we examine the eigenvectors and eigenvalues and find that the energy correlation diagram indicates a transition from a delocalized to a fragmented regime. Phase space information is extracted from the stationary quantum states using the Husimi distribution function. It is shown that the quantum states are localized on the known classical phase space orbits of a nonrigid physical pendulum, and thus the novel phase space characteristics of a nonrigid physical pendulum such as the π\pi motions are seen to be a property of the exact quantum states. Low lying states are harmonic oscillator like libration states while the higher lying states are Schr\"odinger cat-like superpositions of two pendulum rotor states. To study the dynamics in phase space, a comparison is made between a displaced quantum wavepacket and the trajectories of a swarm of points in classical phase space. For a driven double well, it is shown that the classical chaotic dynamics is manifest in the dynamics of the quantum states pictured using the Husimi distribution. Phase space analogy also suggests that a π\pi phase displaced wavepacket put on the unstable fixed point on a separatrix will bifurcate to create a superposition of two pendulum rotor states - a Schr\"odinger cat state (number entangled state) for BEC. It is shown that the choice of initial barrier height and ramping, following a π\pi phase imprinting on the condensate, can be used to generate controlled entangled number states with tunable extremity and sharpness.Comment: revised version, 13 pages, 13 figure

    Electrocatalysis in confined space

    Full text link
    The complex interplay of restricted mass transport leading to local accumulation or depletion of educts, intermediates, products, counterions and co-ions influences the reactions at the active sites of electrocatalysts when electrodes are rough, three-dimensionally mesoporous or nanoporous. This influence is important with regard to activity, and even more to selectivity, of electrocatalytic reactions. The underlying principles are discussed based on the growing awareness of these considerations over recent years

    The high-lying 6^6Li levels at excitation energy around 21 MeV

    Get PDF
    The 3^3H+3^3He cluster structure in 6^6Li was investigated by the 3^3H(α\alpha,3^3H 3^3He)n kinematically complete experiment at the incident energy EαE_\alpha = 67.2 MeV. We have observed two resonances at Ex∗E_x^* = 21.30 and 21.90 MeV which are consistent with the 3^3He(3^3H, γ\gamma)6^6Li analysis in the Ajzenberg-Selove compilation. Our data are compared with the previous experimental data and the RGM and CSRGM calculations.Comment: 12 pages, 6 figures. Accepted for publication in J. Phys. Soc. Jp

    Vortex Formation by Interference of Multiple Trapped Bose-Einstein Condensates

    Get PDF
    We report observations of vortex formation as a result of merging together multiple 87^{87}Rb Bose-Einstein condensates (BECs) in a confining potential. In this experiment, a trapping potential is partitioned into three sections by a barrier, enabling the simultaneous formation of three independent, uncorrelated condensates. The three condensates then merge together into one BEC, either by removal of the barrier, or during the final stages of evaporative cooling if the barrier energy is low enough; both processes can naturally produce vortices within the trapped BEC. We interpret the vortex formation mechanism as originating in interference between the initially independent condensates, with indeterminate relative phases between the three initial condensates and the condensate merging rate playing critical roles in the probability of observing vortices in the final, single BEC.Comment: 5 pages, 3 figure

    The Influence of Nanoconfinement on Electrocatalysis

    Full text link
    The use of nanoparticles and nanostructured electrodes are abundant in electrocatalysis. These nanometric systems contain elements of nanoconfinement in different degrees, depending on the geometry, which can have a much greater effect on the activity and selectivity than often considered. In this Review, we firstly identify the systems containing different degrees of nanoconfinement and how they can affect the activity and selectivity of electrocatalytic reactions. Then we follow with a fundamental understanding of how electrochemistry and electrocatalysis are affected by nanoconfinement, which is beginning to be uncovered, thanks to the development of new, atomically precise manufacturing and fabrication techniques as well as advances in theoretical modeling. The aim of this Review is to help us look beyond using nanostructuring as just a way to increase surface area, but also as a way to break the scaling relations imposed on electrocatalysis by thermodynamics
    • …
    corecore