2,035 research outputs found
Angular dependence of the bulk nucleation field Hc2 of aligned MgB2 crystallites
Studies on the new MgB2 superconductor, with a critical temperature Tc ~ 39
K, have evidenced its potential for applications although intense magnetic
relaxation effects limit the critical current density, Jc, at high magnetic
fields. This means that effective pinning centers must be added into the
material microstructure, in order to halt dissipative flux movements.
Concerning the basic microscopic mechanism to explain the superconductivity in
MgB2, several experimental and theoretical works have pointed to the relevance
of a phonon-mediated interaction, in the framework of the BCS theory. Questions
have been raised about the relevant phonon modes, and the gap and Fermi surface
anisotropies, in an effort to interpret spectroscopic and thermal data that
give values between 2.4 and 4.5 for the gap energy ratio. Preliminary results
on the anisotropy of Hc2 have shown a ratio, between the in-plane and
perpendicular directions, around 1.7 for aligned MgB2 crystallites and 1.8 for
epitaxial thin films. Here we show a study on the angular dependence of Hc2
pointing to a Fermi velocity anisotropy around 2.5. This anisotropy certainly
implies the use of texturization techniques to optimize Jc in MgB2 wires and
other polycrystalline components.Comment: 10 pages + 4 Figs.; Revised version accepted in Phys. Rev.
Low-lying S-wave and P-wave Dibaryons in a Nodal Structure Analysis
The dibaryon states as six-quark clusters of exotic QCD states are
investigated in this paper. With the inherent nodal surface structure analysis,
the wave functions of the six-quark clusters (in another word, the dibaryons)
are classified. The contribution of the hidden color channels are discussed.
The quantum numbers of the low-lying dibaryon states are obtained. The States
, ,
, and the
hidden color channel states with the same quantum numbers are proposed to be
the candidates of dibaryons, which may be observed in experiments.Comment: 29 pages, 2 figure
Theoretical current-voltage characteristics of ferroelectric tunnel junctions
We present the concept of ferroelectric tunnel junctions (FTJs). These
junctions consist of two metal electrodes separated by a nanometer-thick
ferroelectric barrier. The current-voltage characteristics of FTJs are analyzed
under the assumption that the direct electron tunneling represents the dominant
conduction mechanism. First, the influence of converse piezoelectric effect
inherent in ferroelectric materials on the tunnel current is described. The
calculations show that the lattice strains of piezoelectric origin modify the
current-voltage relationship owing to strain-induced changes of the barrier
thickness, electron effective mass, and position of the conduction-band edge.
Remarkably, the conductance minimum becomes shifted from zero voltage due to
the piezoelectric effect, and a strain-related resistive switching takes place
after the polarization reversal in a ferroelectric barrier. Second, we analyze
the influence of the internal electric field arising due to imperfect screening
of polarization charges by electrons in metal electrodes. It is shown that, for
asymmetric FTJs, this depolarizing-field effect also leads to a considerable
change of the barrier resistance after the polarization reversal. However, the
symmetry of the resulting current-voltage loop is different from that
characteristic of the strain-related resistive switching. The crossover from
one to another type of the hysteretic curve, which accompanies the increase of
FTJ asymmetry, is described taking into account both the strain and
depolarizing-field effects. It is noted that asymmetric FTJs with dissimilar
top and bottom electrodes are preferable for the non-volatile memory
applications because of a larger resistance on/off ratio.Comment: 14 pages, 8 figure
Watching dark solitons decay into vortex rings in a Bose-Einstein condensate
We have created spatial dark solitons in two-component Bose-Einstein
condensates in which the soliton exists in one of the condensate components and
the soliton nodal plane is filled with the second component. The filled
solitons are stable for hundreds of milliseconds. The filling can be
selectively removed, making the soliton more susceptible to dynamical
instabilities. For a condensate in a spherically symmetric potential, these
instabilities cause the dark soliton to decay into stable vortex rings. We have
imaged the resulting vortex rings.Comment: 4 pages, 4 figure
âWe are labeled as gang members, even though we are notâ: belonging, aspirations and social mobility in Cartagena
This paper explores how belonging and aspirations interact to shape marginalized young Colombiansâ strategies for upward social mobility. Recent literature has argued that in the context of inequality and poverty, social mobility is constrained by peopleâs inability to aspire to and/or achieve their aspirations. The majority of this literature is from the economics field and looks at the way poverty acts as a brake on social mobility. This paper provides an additional interdisciplinary analysis of the role of âbelongingâ (to places and social class) in influencing aspirations of young Colombians. Findings are based on ethnographic fieldwork with young people from two marginalized neighborhoods in Cartagena. It is argued that aspirations are closely linked to belonging and the extent to which young people feel integral to or distanced from their localities. Using a Bourdieusian perspective, the paper examines how belonging is developed and how it influences behavior, orientations and future prospects. This approach generates insights into young peopleâs apparent low aspirations beyond the explanation of internal behavioral poverty traps. In so doing, it provides a more comprehensive understanding of how societal structures limit aspiration development and achievement
Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting
Determining cost-effective semiconductors exhibiting desirable properties for commercial photoelectrochemical water splitting remains a challenge. Herein, we report a Sb2Se3 semiconductor that satisfies most requirements for an ideal high-performance photoelectrode, including a small band gap and favourable cost, optoelectronic properties, processability, and photocorrosion stability. Strong anisotropy, a major issue for Sb2Se3, is resolved by suppressing growth kinetics via close space sublimation to obtain high-quality compact thin films with favourable crystallographic orientation. The Sb2Se3 photocathode exhibits a high photocurrent density of almost 30mAcm(-2) at 0V against the reversible hydrogen electrode, the highest value so far. We demonstrate unassisted solar overall water splitting by combining the optimised Sb2Se3 photocathode with a BiVO4 photoanode, achieving a solar-to-hydrogen efficiency of 1.5% with stability over 10h under simulated 1 sun conditions employing a broad range of solar fluxes. Low-cost Sb2Se3 can thus be an attractive breakthrough material for commercial solar fuel production. While photoelectrochemical water splitting offers an integrated means to convert sunlight to a renewable fuel, cost-effective light-absorbers are rare. Here, authors report Sb2Se3 photocathodes for high-performance photoelectrochemical water splitting devices
Vortex Dynamics in Dissipative Systems
We derive the exact equation of motion for a vortex in two- and three-
dimensional non-relativistic systems governed by the Ginzburg-Landau equation
with complex coefficients. The velocity is given in terms of local gradients of
the magnitude and phase of the complex field and is exact also for arbitrarily
small inter-vortex distances. The results for vortices in a superfluid or a
superconductor are recovered.Comment: revtex, 5 pages, 1 encapsulated postscript figure (included), uses
aps.sty, epsf.te
Vortex precession in Bose-Einstein condensates: observations with filled and empty cores
We have observed and characterized the dynamics of singly quantized vortices
in dilute-gas Bose-Einstein condensates. Our condensates are produced in a
superposition of two internal states of 87Rb, with one state supporting a
vortex and the other filling the vortex core. Subsequently, the state filling
the core can be partially or completely removed, reducing the radius of the
core by as much as a factor of 13, all the way down to its bare value. The
corresponding superfluid rotation rates, evaluated at the core radius, vary by
a factor of 150, but the precession frequency of the vortex core about the
condensate axis changes by only a factor of two.Comment: 4 pages, 3 figure
Solutions of the Faddeev-Yakubovsky equations for the four nucleons scattering states
The Faddeev-Yakubowsky equations in configuration space have been solved for
the four nucleon system. The results with an S-wave interaction model in the
isospin approximation are presented. They concern the bound and scattering
states below the first three-body threshold. The elastic phase-shifts for the
N+NNN reaction in different () channels are given and the corresponding
low energy expansions are discussed. Particular attention is payed to the n+t
elastic cross section. Its resonant structure is well described in terms of a
simple NN interaction. First results concerning the S-matrix for the coupled
N+NNN-NN+NN channels and the strong deuteron-deuteron scattering length are
obtained.Comment: latex.tar.gz, 36 pages, 10 figures, 11 tables. To be published in
Physical Review
Suppression and enhancement of impurity scattering in a Bose-Einstein condensate
Impurity atoms propagating at variable velocities through a trapped
Bose-Einstein condensate were produced using a stimulated Raman transition. The
redistribution of momentum by collisions between the impurity atoms and the
stationary condensate was observed in a time-of-flight analysis. The
collisional cross section was dramatically reduced when the velocity of the
impurities was reduced below the speed of sound of the condensate, in agreement
with the Landau criterion for superfluidity. For large numbers of impurity
atoms, we observed an enhancement of atomic collisions due to bosonic
stimulation. This enhancement is analogous to optical superradiance.Comment: 4 pages, 4 figure
- âŠ