33 research outputs found

    Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis

    Get PDF
    Background: Influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus are the most common viruses associated with acute lower respiratory infections in young children (<5 years) and older people (≥65 years). A global report of the monthly activity of these viruses is needed to inform public health strategies and programmes for their control. Methods: In this systematic analysis, we compiled data from a systematic literature review of studies published between Jan 1, 2000, and Dec 31, 2017; online datasets; and unpublished research data. Studies were eligible for inclusion if they reported laboratory-confirmed incidence data of human infection of influenza virus, respiratory syncytial virus, parainfluenza virus, or metapneumovirus, or a combination of these, for at least 12 consecutive months (or 52 weeks equivalent); stable testing practice throughout all years reported; virus results among residents in well-defined geographical locations; and aggregated virus results at least on a monthly basis. Data were extracted through a three-stage process, from which we calculated monthly annual average percentage (AAP) as the relative strength of virus activity. We defined duration of epidemics as the minimum number of months to account for 75% of annual positive samples, with each component month defined as an epidemic month. Furthermore, we modelled monthly AAP of influenza virus and respiratory syncytial virus using site-specific temperature and relative humidity for the prediction of local average epidemic months. We also predicted global epidemic months of influenza virus and respiratory syncytial virus on a 5° by 5° grid. The systematic review in this study is registered with PROSPERO, number CRD42018091628. Findings: We initally identified 37 335 eligible studies. Of 21 065 studies remaining after exclusion of duplicates, 1081 full-text articles were assessed for eligibility, of which 185 were identified as eligible. We included 246 sites for influenza virus, 183 sites for respiratory syncytial virus, 83 sites for parainfluenza virus, and 65 sites for metapneumovirus. Influenza virus had clear seasonal epidemics in winter months in most temperate sites but timing of epidemics was more variable and less seasonal with decreasing distance from the equator. Unlike influenza virus, respiratory syncytial virus had clear seasonal epidemics in both temperate and tropical regions, starting in late summer months in the tropics of each hemisphere, reaching most temperate sites in winter months. In most temperate sites, influenza virus epidemics occurred later than respiratory syncytial virus (by 0·3 months [95% CI −0·3 to 0·9]) while no clear temporal order was observed in the tropics. Parainfluenza virus epidemics were found mostly in spring and early summer months in each hemisphere. Metapneumovirus epidemics occurred in late winter and spring in most temperate sites but the timing of epidemics was more diverse in the tropics. Influenza virus epidemics had shorter duration (3·8 months [3·6 to 4·0]) in temperate sites and longer duration (5·2 months [4·9 to 5·5]) in the tropics. Duration of epidemics was similar across all sites for respiratory syncytial virus (4·6 months [4·3 to 4·8]), as it was for metapneumovirus (4·8 months [4·4 to 5·1]). By comparison, parainfluenza virus had longer duration of epidemics (6·3 months [6·0 to 6·7]). Our model had good predictability in the average epidemic months of influenza virus in temperate regions and respiratory syncytial virus in both temperate and tropical regions. Through leave-one-out cross validation, the overall prediction error in the onset of epidemics was within 1 month (influenza virus −0·2 months [−0·6 to 0·1]; respiratory syncytial virus 0·1 months [−0·2 to 0·4]). Interpretation: This study is the first to provide global representations of month-by-month activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus. Our model is helpful in predicting the local onset month of influenza virus and respiratory syncytial virus epidemics. The seasonality information has important implications for health services planning, the timing of respiratory syncytial virus passive prophylaxis, and the strategy of influenza virus and future respiratory syncytial virus vaccination. Funding: European Union Innovative Medicines Initiative Respiratory Syncytial Virus Consortium in Europe (RESCEU)

    Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis

    Get PDF
    Background Influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus are the most common viruses associated with acute lower respiratory infections in young children (= 65 years). A global report of the monthly activity of these viruses is needed to inform public health strategies and programmes for their control.Methods In this systematic analysis, we compiled data from a systematic literature review of studies published between Jan 1, 2000, and Dec 31, 2017; online datasets; and unpublished research data. Studies were eligible for inclusion if they reported laboratory-confirmed incidence data of human infection of influenza virus, respiratory syncytial virus, parainfluenza virus, or metapneumovirus, or a combination of these, for at least 12 consecutive months (or 52 weeks equivalent); stable testing practice throughout all years reported; virus results among residents in well-defined geographical locations; and aggregated virus results at least on a monthly basis. Data were extracted through a three-stage process, from which we calculated monthly annual average percentage (AAP) as the relative strength of virus activity. We defined duration of epidemics as the minimum number of months to account for 75% of annual positive samples, with each component month defined as an epidemic month. Furthermore, we modelled monthly AAP of influenza virus and respiratory syncytial virus using site-specific temperature and relative humidity for the prediction of local average epidemic months. We also predicted global epidemic months of influenza virus and respiratory syncytial virus on a 5 degrees by 5 degrees grid. The systematic review in this study is registered with PROSPERO, number CRD42018091628.Findings We initally identified 37 335 eligible studies. Of 21 065 studies remaining after exclusion of duplicates, 1081 full-text articles were assessed for eligibility, of which 185 were identified as eligible. We included 246 sites for influenza virus, 183 sites for respiratory syncytial virus, 83 sites for parainfluenza virus, and 65 sites for metapneumovirus. Influenza virus had clear seasonal epidemics in winter months in most temperate sites but timing of epidemics was more variable and less seasonal with decreasing distance from the equator. Unlike influenza virus, respiratory syncytial virus had clear seasonal epidemics in both temperate and tropical regions, starting in late summer months in the tropics of each hemisphere, reaching most temperate sites in winter months. In most temperate sites, influenza virus epidemics occurred later than respiratory syncytial virus (by 0.3 months [95% CI -0.3 to 0.9]) while no clear temporal order was observed in the tropics. Parainfluenza virus epidemics were found mostly in spring and early summer months in each hemisphere. Metapneumovirus epidemics occurred in late winter and spring in most temperate sites but the timing of epidemics was more diverse in the tropics. Influenza virus epidemics had shorter duration (3.8 months [3.6 to 4.0]) in temperate sites and longer duration (5.2 months [4.9 to 5.5]) in the tropics. Duration of epidemics was similar across all sites for respiratory syncytial virus (4.6 months [4.3 to 4.8]), as it was for metapneumovirus (4.8 months [4.4 to 5.1]). By comparison, parainfluenza virus had longer duration of epidemics (6.3 months [6.0 to 6.7]). Our model had good predictability in the average epidemic months of influenza virus in temperate regions and respiratory syncytial virus in both temperate and tropical regions. Through leave-one-out cross validation, the overall prediction error in the onset of epidemics was within 1 month (influenza virus -0.2 months [-0.6 to 0.1]; respiratory syncytial virus 0.1 months [-0.2 to 0.4]).Interpretation This study is the first to provide global representations of month-by-month activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus. Our model is helpful in predicting the local onset month of influenza virus and respiratory syncytial virus epidemics. The seasonality information has important implications for health services planning, the timing of respiratory syncytial virus passive prophylaxis, and the strategy of influenza virus and future respiratory syncytial virus vaccination. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd

    Hypotensive activity of crude extract of marine red alagae, Gracilaria SP. in rats

    Get PDF
    Hypotensive properties of the crude extract of Sri Lankan marine red algaeGracilaria sp. of the family Graci/aracea were investigated on anaesthetized ratsusing two doses (250 or 500mg/kg) given intraperitoneal/yo The results showthat the crude extract possesses antihypertensive properties. The extract inducedan immediate fall in systolic blood pressure (within 5 min) which was shortlivedwith the lower dose and sustained with the higher dose. The precise modeof the antihypertensive action is uncertain but is likely to be mediated via decreasedsympathetic activity

    Nongastric H,K-ATPase: structure and functional properties

    No full text
    Nongastric H,K-ATPases whose catalytic subunits (AL1) encoded by human ATP1AL1 and homologous animal genes comprise the third distinct group within the X,K-ATPase family. No unique nongastric beta has been identified. Precise in situ colocalization and strong association of AL1 with beta1 of Na,K-ATPase was detected in apical membranes of rodent prostate epithelium. In this tissue, beta1NK serves as an authentic subunit of both the Na,K- and nongastric H,K-pumps. Upon expression in Xenopus oocytes the human AL1 can assemble with beta1NK, and more efficiently with gastric betaHK, into functional H,K-pumps. Both AL1/beta complexes exhibit a similar K-affinity, and their K-transport depends on intra- and extracellular Na. These data provide new evidence that nongastric H,K-ATPase can perform Na/K-exchange, and indicate that beta does not significantly affect this ion-pump function. Analysis of human nongastric H,K-ATPase expressed in Sf-21 insect cells revealed that AL1/betaHK exhibits substantial enzymatic activities in K-free medium and K stimulates, but Na has inhibitory effect on ATP hydrolysis. Thus, although the nongastric H,K-ATPase can function as Na/K exchanger, its reaction mechanism is different from that of the Na,K-ATPase. Human nongastric H,K-ATPase is highly sensitive to bufalin, digoxin, and digitoxin, but almost resistant to digoxigenin and ouabagenin

    Evaluation of the suitability of local dolomite as a replacement for calcite in solid tyre manufacture

    No full text
    The mineral calcite is currently used in a wide range of industries and the main use of calcite powder in Sri Lanka is as a non-reinforcing filler in the manufacture of rubber products. The mineral dolomite is more abundantly found in Sri Lanka than calcite and it consists of a mixture of calcium and magnesium carbonates. Dolomite is very similar to calcite, but harder, denser and slightly more acid resistant. The main aim of this study was to evaluate the suitability of dolomite as a replacement for calcite in solid tyre manufacture. A series of 90:10 natural rubber (NR)/polybutadiene rubber (BR) blend compounds was prepared according to a middle layer, solid tyre formulation by varying the calcite to dolomite ratio at 10 phr intervals. Total filler loading was kept constant at 70 phr. Cure characteristics and physico-mechanical properties of all eight blend compounds were evaluated and compared.   The NR/BR blend compound containing 100% dolomite was comparable to the blend compound containing 100% calcite in terms of hardness, modulus at 300% elongation, tensile strength, abrasion weight loss, resilience, compression set and resistance to flex-cracking. The blend compound containing 100% dolomite exhibited a higher scorch safety and lower cure time in comparison to that containing 100% calcite, which are advantages during the moulding operation. However, maximum torque and minimum torque of the blend compound prepared with 100% dolomite were higher than those of the blend compound prepared with 100% calcite. The NR/BR blend compound with 10:60 calcite to dolomite ratio is the best among the blend compounds containing both calcite and dolomite in terms of physico-mechanical properties. Further, the cure characteristics and most of the physico-mechanical properties of the 100% calcite as well as 100% dolomite containing blend compounds were in accordance with the requirements of a middle layer, solid tyre compound. Results in overall indicated that abundantly found dolomite would be a suitable replacement for commonly used calcite in solid tyre manufacture
    corecore