57 research outputs found
An empirical test for cellular automaton models of traffic flow
Based on a detailed microscopic test scenario motivated by recent empirical
studies of single-vehicle data, several cellular automaton models for traffic
flow are compared. We find three levels of agreement with the empirical data:
1) models that do not reproduce even qualitatively the most important empirical
observations,
2) models that are on a macroscopic level in reasonable agreement with the
empirics, and 3) models that reproduce the empirical data on a microscopic
level as well.
Our results are not only relevant for applications, but also shed new light
on the relevant interactions in traffic flow.Comment: 28 pages, 36 figures, accepted for publication in PR
Generalized Force Model of Traffic Dynamics
Floating car data of car-following behavior in cities were compared to
existing microsimulation models, after their parameters had been calibrated to
the experimental data. With these parameter values, additional simulations have
been carried out, e.g. of a moving car which approaches a stopped car. It
turned out that, in order to manage such kinds of situations without producing
accidents, improved traffic models are needed. Good results have been obtained
with the proposed generalized force model.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.htm
Congested Traffic States in Empirical Observations and Microscopic Simulations
We present data from several German freeways showing different kinds of
congested traffic forming near road inhomogeneities, specifically lane
closings, intersections, or uphill gradients. The states are localized or
extended, homogeneous or oscillating. Combined states are observed as well,
like the coexistence of moving localized clusters and clusters pinned at road
inhomogeneities, or regions of oscillating congested traffic upstream of nearly
homogeneous congested traffic. The experimental findings are consistent with a
recently proposed theoretical phase diagram for traffic near on-ramps [D.
Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. {\bf 82}, 4360 (1999)].
We simulate these situations with a novel continuous microscopic single-lane
model, the ``intelligent driver model'' (IDM), using the empirical boundary
conditions. All observations, including the coexistence of states, are
qualitatively reproduced by describing inhomogeneities with local variations of
one model parameter.
We show that the results of the microscopic model can be understood by
formulating the theoretical phase diagram for bottlenecks in a more general
way. In particular, a local drop of the road capacity induced by parameter
variations has practically the same effect as an on-ramp.Comment: Now published in Phys. Rev. E. Minor changes suggested by a referee
are incorporated; full bibliographic info added. For related work see
http://www.mtreiber.de/ and http://www.helbing.org
Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry : a meta-analysis
Background Restless legs syndrome is a prevalent chronic neurological disorder with potentially severe mental and physical health consequences. Clearer understanding of the underlying pathophysiology is needed to improve treatment options. We did a meta-analysis of genome-wide association studies (GWASs) to identify potential molecular targets. Methods In the discovery stage, we combined three GWAS datasets (EU-RLS GENE, INTERVAL, and 23andMe) with diagnosis data collected from 2003 to 2017, in face-to-face interviews or via questionnaires, and involving 15126 cases and 95 725 controls of European ancestry. We identified common variants by fixed-effect inverse-variance meta-analysis. Significant genome-wide signals (p Findings We identified and replicated 13 new risk loci for restless legs syndrome and confirmed the previously identified six risk loci. MEIS1 was confirmed as the strongest genetic risk factor for restless legs syndrome (odds ratio 1.92, 95% CI 1 85-1.99). Gene prioritisation, enrichment, and genetic correlation analyses showed that identified pathways were related to neurodevelopment and highlighted genes linked to axon guidance (associated with SEMA6D), synapse formation (NTNG1), and neuronal specification (HOXB cluster family and MYT1). Interpretation Identification of new candidate genes and associated pathways will inform future functional research. Advances in understanding of the molecular mechanisms that underlie restless legs syndrome could lead to new treatment options. We focused on common variants; thus, additional studies are needed to dissect the roles of rare and structural variations.Peer reviewe
- …