169 research outputs found

    Evaluation of the radioactive waste characterisation at the Olkiluoto nuclear power plant

    Get PDF

    Seasonal cycle and source analyses of aerosol optical properties in a semi-urban environment at Puijo station in Eastern Finland

    Get PDF
    We introduce a four-year (in 2006–2010) continuous data set of aerosol optical properties at Puijo in Kuopio, Finland. We study the annual and diurnal variation of the aerosol scattering and absorption coefficients, hemispheric backscattering fraction, scattering Ångström exponent, and single scattering albedo, whose median values over this period were 7.2 Mm<sup>−1</sup> (at 550 nm), 1.0 Mm<sup>−1</sup> (at 637 nm), 0.15, 1.93 (between 450 and 550 nm), and 0.85, respectively. The scattering coefficient peaked in the spring and autumn, being 2–4 times those in the summer and winter. An exception was the summer of 2010, when the scattering coefficient was elevated to ~300 Mm<sup>−1</sup> by plumes from forest fires in Russia. The absorption coefficient peaked in the winter when soot-containing particles derived from biomass burning were present. The higher relative absorption coefficients resulted in lower single scattering albedo in winter. The optical properties varied also with wind direction and time of the day, indicating the effect of the local pollutant sources and the age of the particles. Peak values in the single scattering albedo were observed when the wind blew from a paper mill and from the sector without local pollutant sources. These observations were linked, respectively, to the sulphate-rich aerosol from the paper mill and the oxygenated organics in the aged aerosol, which both are known to increase the scattering characteristics of aerosols. Decreases in the single scattering albedo in the morning and afternoon, distinct in the summertime, were linked to the increased traffic density at these hours. The scattering and absorption coefficients of residential and long-range transported aerosol (two separate cloud events) were found to be decreased by clouds. The effect was stronger for the scattering than absorption, indicating preferential activation of the more hygroscopic aerosol with higher scattering characteristics

    Cognitive Outcome in Childhood-Onset Epilepsy: A Five-Decade Prospective Cohort Study

    Get PDF
    Objectives: Little is known about the very long-term cognitive outcome in patients with childhood-onset epilepsy. The aim of this unique prospective population-based cohort study was to examine cognitive outcomes in aging participants with childhood-onset epilepsy (mean onset age = 5.3 years) five decades later (mean age at follow-up = 56.5 years). Methods: The sample consisted of 48 participants with childhood-onset epilepsy and 48 age-matched healthy controls aged 48-63 years. Thirty-six epilepsy participants were in remission and 12 continued to have seizures. Cognitive function was examined with 11 neuropsychological tests measuring language and semantic function, episodic memory, and learning, visuomotor function, executive function, and working memory. Results: The risk of cognitive impairment was very high in participants with continuing seizures; odds ratio (OR) = 11.7 (95% confidence interval [CI] (2.8, 49.6), p = .0008). They exhibited worse performances across measures of language and semantic function, and visuomotor function compared to participants with remitted epilepsy and healthy controls. In the participants with remitted epilepsy, the risk of cognitive impairment was somewhat elevated, but not statistically significant; OR = 2.6 (95% CI [0.9, 7.5], p = .08).Conclusions: Our results showed that the distinction of continued versus discontinued seizures was critical for determining long-term cognitive outcome in childhood-onset epilepsy. Few participants in remission exhibited marked cognitive impairment compared to age-matched peers. However, a subgroup of participants with decades long active epilepsy, continuous seizure activity and anti-epileptic drug (AED) medication, showed clinically significant cognitive impairment and are thus in a more precarious position when entering older age.</div

    Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    Get PDF
    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol, which affect human health, crop production and regional climate. Measurements of aromatic hydrocarbons were conducted at the Welgegund measurement station (South Africa), which is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg–Pretoria metropolitan conurbation (> 10 million people), the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anticyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for 1 year. Samples were collected twice a week for 2 h during daytime and 2 h during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median (mean) total aromatic hydrocarbon concentrations ranged between 0.01 (0.011) and 3.1 (3.2) ppb. Benzene levels did not exceed the local air quality standard limit, i.e. annual mean of 1.6 ppb. Toluene was the most abundant compound, with an annual median (mean) concentration of 0.63 (0.89) ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found, and no distinct seasonal patterns were observed. Air mass back trajectory analysis indicated that the lack of seasonal cycles could be attributed to patterns determining the origin of the air masses sampled. Aromatic hydrocarbon concentrations were in general significantly higher in air masses that passed over anthropogenically impacted regions. Inter-compound correlations and ratios gave some indications of the possible sources of the different aromatic hydrocarbons in the source regions defined in the paper. The highest contribution of aromatic hydrocarbon concentrations to ozone formation potential was also observed in plumes passing over anthropogenically impacted regions
    • …
    corecore